Skip to main content
Log in

Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Sperm delivery in flowering plants requires extensive pollen tube growth through the female sporophytic tissues of the pistil. The apical cell wall emerges as a central player in the control of pollen tube growth, since it provides strength to withstand the internal turgor pressure, while imparting sufficient plasticity to allow cell wall extension through the incorporation of new membrane and wall material. Within this scenario, pectin methylesterases (PMEs; EC 3.1.1.11) emerge as crucial regulators in determining the mechanical properties of pectins, the major component of the apical pollen tube wall. We previously identified NtPPME1, a pollen specific PME from Nicotiana tabacum. Here we show that silencing of NtPPME1 results in a mild but significant decrease of in vivo pollen tube growth while the overall PME activity in pollen is not significantly affected. Although the precise mechanisms responsible for the observed phenotype are not known, it seems likely that the cell must maintain a closely regulated level of PME activity in order to maintain the equilibrium between strength and plasticity in the apical cell wall. A relatively minor disturbance of this equilibrium, as caused by NtPPME1 silencing, compromises pollen tube growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS-NtPPME1:

Antisense NtPPME1

PME:

Pectin methylesterase

References

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Catoire L, Pierron M, Morvan C, du Penhoat CH, Goldberg R (1998) Investigation of the action patterns of pectinmethylesterase isoforms through kinetic analyses and NMR spectroscopy—implications in cell wall expansion. J Biol Chem 273:33150–33156

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wang H, Wu H (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  PubMed  CAS  Google Scholar 

  • Coté F, Hahn MG (1994) Oligosaccharins—Structures and signal-transduction. Plant Mol Biol 26:1379–1411

    Article  PubMed  Google Scholar 

  • Downie B, Dirk LMA, Hadfield KA, Wilkins TA, Bennett AB, Bradford KJ (1998) A gel diffusion assay for quantification of pectin methylesterase activity. Anal Biochem 264:149–157

    Article  PubMed  CAS  Google Scholar 

  • Ferguson C, Teeri TT, Siika AM, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460

    Article  CAS  Google Scholar 

  • Franklin-Tong VE (1999) Signaling in pollination. Curr Opin Plant Biol 2:490–495

    Article  PubMed  CAS  Google Scholar 

  • Goldberg R, Morvan C, Roland JC (1986) Composition, properties and localization of pectins in young and mature cells of the mung bean hypocotyl. Plant Cell Physiol 27:417–429

    CAS  Google Scholar 

  • Goldberg RB (1988) Plants: novel developmental processes. Science 240:1460–1467

    Article  PubMed  CAS  Google Scholar 

  • Goodspeed TH (1954) The Genus Nicotiana. Chronica Botanica, Waltham, MA, USA

    Google Scholar 

  • Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  • Hadfield KA, Bennett AB (1998) Polygalacturonases: many genes in search of a function. Plant Physiol 117:337–343

    Article  PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hou WC, Lin YH (1998) Activity staining of pectinesterase on polyacrylamide gels after acidic or sodium dodecyl sulfate electrophoresis. Electrophoresis 19:692–694

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Matsunaga T (2001) Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 57:969–974

    Article  PubMed  CAS  Google Scholar 

  • Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Mollet JC, Dong J, Zhang KL, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci USA 100:16125–16130

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the heads of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lenartowska M, Rodriguez-Garcia MI, Bednarska E (2001) Immunocytochemical localization of esterified and unesterified pectins in unpollinated and pollinated styles of Petunia hybrida Hort. Planta 213:182–191

    Article  PubMed  CAS  Google Scholar 

  • Li HJ, Bacic A, Read SM (1999) Role of a callose synthase zymogen in regulating wall deposition in pollen tubes of Nicotiana alata Link et Otto. Planta 208:528–538

    Article  CAS  Google Scholar 

  • Markovič O, Janeček S (2004) Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr Res 339:2281–2295

    Article  PubMed  Google Scholar 

  • Mollet JC, Park SY, Nothnagel EA, Lord EM (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Mort AJ (2002) Interactions between pectins and other polymers. In: Seymour GB, Knox JP (eds) Pectins and their manipulation. Blackwell, Sheffield, pp 30–51

    Google Scholar 

  • Niesenbaum RA (1999) The effects of pollen load size and donor diversity on pollen performance, selective abortion, and progeny vigor in Mirabilis jalapa (Nyctaginaceae). Am J Bot 86:261–268

    Article  Google Scholar 

  • O’Neill M, York W (2003) The composition and structure of primary cell walls. In: Rose J (ed) Annual plant reviews, Vol. 8. The plant cell wall. Blackwell, USA, pp 1–54

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  PubMed  CAS  Google Scholar 

  • Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  PubMed  CAS  Google Scholar 

  • Pina C, Pinto F, Feijό JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Ren CW, Kermode AR (2000) An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds. Plant Physiol 124:231–242

    Article  PubMed  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen DA (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ, Harvey A, Lonsdale DM (1992) Isolation and characterization of a tobacco gene with homology to pectate lyase which is specifically expressed during microsporogenesis. Plant Mol Biol 20:493–502

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Moore I (1995) The plant Golgi-apparatus—structure, functional-organization and trafficking mechanisms. Annu Rev Plant Physiol Plant Mol Biol 46:261–288

    CAS  Google Scholar 

  • Sterling JD, Quigley HF, Orellana A, Mohnen D (2001) The catalytic site of the pectin biosynthetic enzyme alpha-1,4-galacturonosyltransferase is located in the lumen of the Golgi. Plant Physiol 127:360–371

    Article  PubMed  CAS  Google Scholar 

  • Stone BA, Evans NA, Bonig I, Clarke AE (1984) The application of Sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 122:191–195

    Article  CAS  Google Scholar 

  • Tang WH, Ezcurra I, Muschietti J, McCormick S (2002) A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14:2277–2287

    Article  PubMed  CAS  Google Scholar 

  • Tebbutt SJ, Rogers HJ, Lonsdale DM (1994) Characterization of a tobacco gene encoding a pollen-specific polygalacturonase. Plant Mol Biol 25:283–297

    Article  PubMed  CAS  Google Scholar 

  • Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific gene-expression in transgenic plants—coordinate regulation of 2 different tomato gene promoters during microsporogenesis. Development 109:705–713

    PubMed  CAS  Google Scholar 

  • Wen FS, Zhu YM, Hawes MC (1999) Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11:1129–1140

    Article  PubMed  CAS  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Yang HY, Lord EM (2004) Calcium levels increase in the lily stylar transmitting tract after pollination. Sex Plant Reprod 16:259–263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alice Cheung and her colleagues (Department of Biochemistry and Molecular Biology, University of Massachusetts) for the GFP-expressing N. tabacum pollen and plant transformation facilities. Teddi Bloniarz and Monika Johnson from the Biology Greenhouse Facility are thanked for excellent care of the plants. All microscopy images were acquired at the Central Microscopy Facility (NSF BBS 8714235). This project was supported by the National Science Foundation grant No. MCB-0077599 and MCB-0516852 to PKH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Bosch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosch, M., Hepler, P.K. Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223, 736–745 (2006). https://doi.org/10.1007/s00425-005-0131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0131-x

Keywords

Navigation