Skip to main content
Log in

Segmental differences in the non-neuronal cholinergic system in rat caecum

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Acetylcholine is not only a neurotransmitter but is also produced by several non-neuronal cell types with barrier or defence function. One of the non-neuronal tissues with expression of the key enzyme for production of acetylcholine, the choline acetyltransferase (ChAT), is the colonic surface epithelium, which releases acetylcholine after contact with the short-chain fatty acid propionate produced physiologically in the colonic lumen during the microbial fermentation of carbohydrates. Despite the fact that the caecum is the largest fermentation chamber in non-ruminant mammals, nothing is known about the expression and function of a non-neuronal cholinergic system in this part of the large intestine, which was addressed in the present study. In Ussing chamber experiments, propionate induced a concentration-dependent Cl secretion leading to an increase in short-circuit current (Isc), which was stronger in the aboral part (near the blind ending sac of the caecum) compared to the oral part of caecum. The propionate-induced Isc was blocked by atropine, but was resistant against tetrodotoxin, conotoxins (MVIIC and SVIB) or hexamethonium indicating that propionate acts via non-neuronal acetylcholine. Immunohistochemical staining revealed the expression of ChAT in the caecal surface epithelium with a significant gradient between aboral (high) and oral (low) expression. This difference combined with a higher efficiency of cholinergically induced anion secretion (as revealed by the Isc evoked by the cholinergic agonist carbachol) is probably responsible for the segment dependency of the response to propionate. In summary, propionate stimulates anion secretion in rat caecum via non-neuronal acetylcholine emphasizing the physiological importance of the non-neuronal cholinergic system in the communication between the gastrointestinal microbiome and the mammalian host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antuszewicz A, Taciak M, Zebrowska T (2005) The short-chain fatty acid content in the caecal digesta of rats fed diets with various sources of fibre. J Anim Feed Sci 14(Suppl. 1):521–524. https://doi.org/10.22358/jafs/70722/2005

    Article  Google Scholar 

  2. Argenzio RA, Southworth M (1974) Sites of organic acid production and absorption in gastrointestinal tract of the pig. Am J Phys 228:454–460

    Google Scholar 

  3. Bader S, Diener M (2015) Novel aspects of cholinergic regulation of colonic ion transport. Pharmacol Res Perspect 3(3):e00139. https://doi.org/10.1002/prp2.139

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bader S, Klein J, Diener M (2014) Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium. Eur J Pharmacol 733:23–33. https://doi.org/10.1016/j.ejphar.2014.03.036

    Article  CAS  PubMed  Google Scholar 

  5. Bader S, Lottig L, Diener M (2017) Stimulation of Na+-K+-pump currents by epithelial nicotinic receptors in rat colon. Brit. J. Pharmacol. 174(9):880–892. https://doi.org/10.1111/bph.13761

    Article  CAS  Google Scholar 

  6. Bugaut M (1987) Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol 86B:439–472

    CAS  Google Scholar 

  7. Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20(1):15–43. https://doi.org/10.1146/annurev.pa.20.040180.000311

    Article  CAS  PubMed  Google Scholar 

  8. Church DC (1988) The Ruminant animal: digestive physiology and nutrition, 2.ed. edn. Prentice Hall, London

  9. Escobar E, Ibarra C, Todisco E, Parisi M (1990) Water and ion handling in the rat cecum. Am J Phys 259:G786–G791

    CAS  Google Scholar 

  10. Franklin JL, Willard AL (1993) Voltage-dependent sodium and calcium currents of rat myenteric neurons in cell culture. J Neurophysiol 69(4):1264–1275. https://doi.org/10.1152/jn.1993.69.4.1264

    Article  CAS  PubMed  Google Scholar 

  11. Haberberger R, Schultheiss G, Diener M (2006) Epithelial muscarinic M1 receptors contribute to carbachol-induced ion secretion in mouse colon. Eur J Pharmacol 530(3):229–233. https://doi.org/10.1016/j.ejphar.2005.11.055

    Article  CAS  PubMed  Google Scholar 

  12. Hammer R, Giachetti A (1980) Muscarinic receptor subtypes M1 and M2. Biochemical and functional classification. Life Sci 31:2991–2998

    Article  Google Scholar 

  13. Haschke G, Schäfer H, Diener M (2002) Effect of butyrate on membrane potential, ionic currents and intracellular Ca2+ concentration in cultured rat myenteric neurons. Neurogastroenterol Mot 14(2):133–142. https://doi.org/10.1046/j.1365-2982.2002.00312.x

    Article  CAS  Google Scholar 

  14. Hennig B, Schultheiss G, Kunzelmann K, Diener M (2008) Ca2+-induced Cl efflux at rat distal colonic epithelium. J. Membrane Biol 221:61–72

    Article  CAS  Google Scholar 

  15. Karasov WH, Douglas AE (2013) Comparative digestive physiology. Comprehen. Physiol 3:741–783

    Google Scholar 

  16. Klapproth H, Reinheimer T, Metzen J, Münch M, Bittinger F, Kirkpatrick CJ, Hohle KD, Schemann M, Racké K, Wessler I (1997) Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn Schmiedeberg's Arch Pharmacol 355(4):515–523. https://doi.org/10.1007/PL00004977

    Article  CAS  Google Scholar 

  17. Lesko S, Wessler I, Gäbel G, Petto C, Pfannkuche H (2013) Cholinergic modulation of epithelial integrity in the proximal colon of pigs. Cells Tiss Org 197(5):411–420. https://doi.org/10.1159/000345437

    Article  CAS  Google Scholar 

  18. Lindqvist SM, Sharp P, Johnson IT, Satoh Y, Williams MR (1998) Acetylcholine-induced calcium signaling along the rat colonic crypt axis. Gastroenterology 115(5):1131–1143. https://doi.org/10.1016/S0016-5085(98)70084-8

    Article  CAS  PubMed  Google Scholar 

  19. Mestres P, Diener M, Rummel W (1990) Storage of glycogen in rat colonic epithelium during induction of secretion and absorption in vitro. Cell Tissue Res 261(1):195–203. https://doi.org/10.1007/BF00329452

    Article  CAS  PubMed  Google Scholar 

  20. Mitsuya M, Mase T, Tsuchiya Y, Kawakami K, Hattori H, Kobayashi K, Ogino Y, Fujikawa T, Satoh A, Kimura T, Noguchi K, Ohtake N, Tomimoto K (1999) J-104129, a novel muscarinic M3 receptor antagonist with high selectivity for M3 over M2 receptors. Bioorg Med Chem 7(11):2555–2567. https://doi.org/10.1016/S0968-0896(99)00177-7

    Article  CAS  PubMed  Google Scholar 

  21. Moreno S, Gerbig S, Schulz S, Spengler B, Diener M, Bader S (2016) Epithelial propionyl- and butyrylcholine as novel regulators of colonic ion transport. Brit. J. Pharmacol. 173(18):2766–2779. https://doi.org/10.1111/bph.13555

    Article  CAS  Google Scholar 

  22. Nassenstein C, Wiegand S, Lips KS, Li G, Klein J, Kummer W (2015) Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters. Int Immunopharmacol 29(1):173–180. https://doi.org/10.1016/j.intimp.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  23. Natarajan N, Pluznick JL (2014) From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. Am J Physiol Cell Physiol 307(11):C979–C985. https://doi.org/10.1152/ajpcell.00228.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oltmer S, von Engelhardt W (1994) Absorption of short-chain fatty acids from the in-situ-perfused caecum and colon of the guinea pig. Scand J Gastroenterol 29(11):1009–1016. https://doi.org/10.3109/00365529409094878

    Article  CAS  PubMed  Google Scholar 

  25. Padilla F, Couble ML, Coste B, Maingret F, Clerc N, Crest M, Ritter AM, Magloire H, Delmas P (2007) Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: implication for intestinal reflex function and orofacial pain. Mol Cell Neurosci 35(1):138–152. https://doi.org/10.1016/j.mcn.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  26. Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91(12):5340–5344. https://doi.org/10.1073/pnas.91.12.5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sachs L (1992) Angewandte Statistik. Springer, Berlin, p 360. https://doi.org/10.1007/978-3-662-05747-6

    Book  Google Scholar 

  28. Schemann M, Sann H, Schaaf C, Mäder M (1993) Identification of cholinergic neurons in enteric nervous system by antibodies against choline acetyltransferase. Am J Phys 265:G1005–G1009

    CAS  Google Scholar 

  29. Schreiner J, Weber M, Loeschke K (1998) Sodium chloride transport of normal and dietary enlarged rat cecum in vitro. Digestion 59(6):676–682

  30. Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A 78(6):3363–3367. https://doi.org/10.1073/pnas.78.6.3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schultheiss G, Diener M (1997) Regulation of apical and basolateral K+ conductances in the rat colon. Brit J Pharmacol 122(1):87–94. https://doi.org/10.1038/sj.bjp.0701353

    Article  CAS  Google Scholar 

  32. Sellin JH, Hall A, Cragoe EJ Jr, Dubinsky WP (1993) Characterization of an apical sodium conductance in rabbit cecum. Am J Phys 264:G13–G21

    CAS  Google Scholar 

  33. Sellin JH, Dubinsky WP (1994) Apical nonspecific cation conductance in rabbit cecum. Am J Phys 266:G475–G484

    CAS  Google Scholar 

  34. Snipes RL (1981) Anatomy of the cecum of the laboratory mouse and rat. Anat Embryol 162(4):455–474. https://doi.org/10.1007/BF00301871

    Article  CAS  PubMed  Google Scholar 

  35. Strabel D, Diener M (1995) Evidence against direct activation of chloride secretion by carbachol in the rat distal colon. Eur J Pharmacol 274(1-3):181–191. https://doi.org/10.1016/0014-2999(94)00728-P

    Article  CAS  PubMed  Google Scholar 

  36. Vyskočil F, Malomouzh AI, Nikolsky EE (2009) Non-quantal acetylcholine release at the neuromuscular junction. Physiol Res 58(6):763–784

    PubMed  Google Scholar 

  37. Wessler I, Kilbinger H, Bittinger F, Unger R, Kirkpatrick CJ (2003) The non-neuronal cholinergic system in humans: expression, function and pathophysiology. Life Sci 72(18-19):2055–2061. https://doi.org/10.1016/S0024-3205(03)00083-3

    Article  CAS  PubMed  Google Scholar 

  38. Yajima T, Inoue R, Matsumoto M, Yajima M (2011a) Non-neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon. J Physiol 589(4):953–962. https://doi.org/10.1113/jphysiol.2010.199976

    Article  CAS  PubMed  Google Scholar 

  39. Yajima T, Inoue R, Yajima M, Tsuruta T, Karaki S, Hira T, Kuwahara A (2011b) The G-protein on cholesterol-rich membrane microdomains mediates mucosal sensing of short-chain fatty acid and secretory response in rat colon. Acta Physiol 203(3):381–389. https://doi.org/10.1111/j.1748-1716.2011.02331.x

    Article  CAS  Google Scholar 

  40. Yajima M, Kimura S, Karaki S, Nio-Kobayashi J, Tsuruta T, Kuwahara A, Yajima T, Iwanaga T (2016) Non-neuronal, but atropine-sensitive ileal contractile responses to short-chain fatty acids: age-dependent desensitization and restoration under inflammatory conditions in mice. Physiol Rep 4(7):e12759. https://doi.org/10.14814/phy2.12759

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The diligent technical assistance of Mrs. Brigitta Brück, Bärbel Schmidt and Alice Stockinger is a pleasure to acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Diener.

Ethics declarations

Experiments were approved by the named animal welfare officers of the Justus Liebig University (administrative number 577_M) and performed according to the German and European animal welfare law.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bader, S., Diener, M. Segmental differences in the non-neuronal cholinergic system in rat caecum. Pflugers Arch - Eur J Physiol 470, 669–679 (2018). https://doi.org/10.1007/s00424-017-2104-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2104-x

Keywords

Navigation