Skip to main content

Advertisement

Log in

Zebrafish and mouse TASK-2 K+ channels are inhibited by increased CO2 and intracellular acidification

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

TASK-2 is a K2P K+ channel considered as a candidate to mediate CO2 sensing in central chemosensory neurons in mouse. Neuroepithelial cells in zebrafish gills sense CO2 levels through an unidentified K2P K+ channel. We have now obtained zfTASK-2 from zebrafish gill tissue that is 49 % identical to mTASK-2. Like its mouse equivalent, it is gated both by extra- and intracellular pH being activated by alkalinization and inhibited by acidification. The pHi dependence of zfTASK-2 is similar to that of mTASK-2, with pK 1/2 values of 7.9 and 8.0, respectively, but pHo dependence occurs with a pK 1/2 of 8.8 (8.0 for mTASK-2) in line with the relatively alkaline plasma pH found in fish. Increasing CO2 led to a rapid, concentration-dependent (IC50 ~1.5 % CO2) inhibition of mouse and zfTASK-2 that could be resolved into an inhibition by intracellular acidification and a CO2 effect independent of pHi change. Indeed a CO2 effect persisted despite using strongly buffered intracellular solutions abolishing any change in pHi, was present in TASK-2-K245A mutant insensitive to pHi, and also under carbonic anhydrase inhibition. The mechanism by which TASK-2 senses CO2 is unknown but requires the presence of the 245–273 stretch of amino acids in the C terminus that comprises numerous basic amino acids and is important in TASK-2 G protein subunit binding and regulation of the channel. The described CO2 effect might be of importance in the eventual roles played by TASK-2 in chemoreception in mouse and zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Notice that there are dissenting views on the validity of the metabolon concept [2, 5].

References

  1. Abdallah SJ, Perry SF, Jonz MG (2012) CO2 signaling in chemosensory neuroepithelial cells of the zebrafish gill filaments: role of intracellular Ca2+ and pH. Adv Exp Med Biol 758:143–148

    Article  PubMed  Google Scholar 

  2. Al-Samir S, Papadopoulos S, Scheibe RJ, Meissner JD, Cartron JP, Sly WS, Alper SL, Gros G, Endeward V (2013) Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1. J Physiol. doi:10.1113/jphysiol.2013.251181

    PubMed  Google Scholar 

  3. Añazco C, Peña-Münzenmayer G, Araya C, Cid LP, Sepúlveda FV, Niemeyer MI (2013) G protein modulation of K2P potassium channel TASK-2: a role of basic residues in the C-terminus domain. Pflugers Arch. doi:10.1007/s00424-013-1314-0

    PubMed  Google Scholar 

  4. Baxter KA, Church J (1996) Characterization of acid extrusion mechanisms in cultured fetal rat hippocampal neurones. J Physiol 493:457–470

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Boron WF (2010) Evaluating the role of carbonic anhydrases in the transport of HCO3 -related species. Biochim Biophys Acta 1804:410–421

    Article  CAS  PubMed  Google Scholar 

  6. Boyarsky G, Ganz MB, Sterzel RB, Boron WF (1988) pH regulation in single glomerular mesangial cells: I. Acid extrusion in absence and presence of HCO3 . Am J Physiol 255:C844–C856

    CAS  PubMed  Google Scholar 

  7. Chávez RA, Gray AT, Zhao BB, Kindler CH, Mazurek MJ, Mehta Y, Forsayeth JR, Yost CS (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 274:7887–7892

    Article  PubMed  Google Scholar 

  8. Cid LP, Niemeyer MI, Ramírez A, Sepúlveda FV (2000) Splice variants of a ClC-2 chloride channel with differing functional characteristics. Am J Physiol 279:C1198–C1210

    CAS  Google Scholar 

  9. Cid LP, Roa-Rojas HA, Niemeyer MI, González W, Araki M, Araki K, Sepúlveda FV (2013) TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions. Frontiers in Physiology 4:doi: 10.3389/fphys.2013.00198

  10. Claiborne JB, Heisler N (1986) Acid–base regulation and ion transfers in the carp (Cyprinus carpio): pH compensation during graded long- and short-term environmental hypercapnia, and the effect of bicarbonate infusion. J Exp Biol 126:41–61

    CAS  PubMed  Google Scholar 

  11. Cotelesage JJ, Puttick J, Goldie H, Rajabi B, Novakovski B, Delbaere LT (2007) How does an enzyme recognize CO2? Int J Biochem Cell Biol 39:1204–1210

    Article  CAS  PubMed  Google Scholar 

  12. Cundari TR, Wilson AK, Drummond ML, Gonzalez HE, Jorgensen KR, Payne S, Braunfeld J, De JM, Johnson VM (2009) CO2-formatics: how do proteins bind carbon dioxide? J Chem Inf Model 49:2111–2115

    Article  CAS  PubMed  Google Scholar 

  13. D'Adamo MC, Shang L, Imbrici P, Brown SD, Pessia M, Tucker SJ (2011) Genetic inactivation of Kcnj16 identifies Kir5.1 as an important determinant of neuronal PCO2/pH sensitivity. J Biol Chem 286:192–198

    Article  PubMed Central  PubMed  Google Scholar 

  14. Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  CAS  PubMed  Google Scholar 

  15. Filosa JA, Dean JB, Putnam RW (2002) Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol 541:493–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Forster HV, Martino P, Hodges M, Krause K, Bonis J, Davis S, Pan L (2008) The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing. Adv Exp Med Biol 605:322–326

    Article  CAS  PubMed  Google Scholar 

  17. Gestreau C, Heitzmann D, Thomas J, Dubreuil V, Bandulik S, Reichold M, Bendahhou S, Pierson P, Sterner C, Peyronnet-Roux J, Benfriha C, Tegtmeier I, Ehnes H, Georgieff M, Lesage F, Brunet JF, Goridis C, Warth R, Barhanin J (2010) Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proc Natl Acad Sci U S A 107:2325–2330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gierten J, Hassel D, Schweizer PA, Becker R, Katus HA, Thomas D (2012) Identification and functional characterization of zebrafish K2P10.1 (TREK2) two-pore-domain K+ channels. Biochim Biophys Acta 1818:33–41

    Article  CAS  PubMed  Google Scholar 

  19. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  CAS  PubMed  Google Scholar 

  20. Huckstepp RT, Dale N (2011) CO2-dependent opening of an inwardly rectifying K+ channel. Pflugers Arch 461:337–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ishimatsu A, Iwama GK, Bentley DB, Heisler N (1992) Contribution of the secondary circulatory system to acid–base regulation during hypercapnia in rainbow trout (Onchrryncus mykiss). J Exp Biol 170:43–56

    Google Scholar 

  22. Ito Y, Kobayashi S, Nakamura N, Miyagi H, Esaki M, Hoshijima K, Hirose S (2013) Close association of carbonic anhydrase (CA2a and CA15a), Na+/H+ exchanger (Nhe3b), and ammonia transporter Rhcg1 in zebrafish ionocytes responsible for Na+ uptake. Front Physiol 4:59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jiang C, Rojas A, Wang R, Wang X (2005) CO2 central chemosensitivity: why are there so many sensing molecules? Respir Physiol Neurobiol 145:115–126

    Article  CAS  PubMed  Google Scholar 

  24. Jonz MG, Fearon IM, Nurse CA (2004) Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Ph 560:737–752

    CAS  Google Scholar 

  25. Kim Y, Bang H, Gnatenco C, Kim D (2001) Synergistic interaction and the role of C-terminus in the activation of TRAAK K+ channels by pressure, free fatty acids and alkali. Pflugers Arch 442:64–72

    Article  CAS  PubMed  Google Scholar 

  26. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405

    Article  CAS  PubMed  Google Scholar 

  28. López-Barneo J, Ortega-Sáenz P, Pardal R, Pascual A, Piruat JI (2008) Carotid body oxygen sensing. Eur Respir J 32:1386–1398

    Article  PubMed  Google Scholar 

  29. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    Article  CAS  PubMed  Google Scholar 

  30. Mölich A, Heisler N (2005) Determination of pH by microfluorometry: intracellular and interstitial pH regulation in developing early-stage fish embryos (Danio rerio). J Exp Biol 208:4137–4149

    Article  PubMed  Google Scholar 

  31. Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7:1360–1369

    Article  CAS  PubMed  Google Scholar 

  32. Mulkey DK, Talley EM, Stornetta RL, Siegel AR, West GH, Chen X, Sen N, Mistry AM, Guyenet PG, Bayliss DA (2007) TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci 27:14049–14058

    Article  CAS  PubMed  Google Scholar 

  33. Nattie E, Li A (2009) Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol 106:1464–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Niemeyer MI, Cid LP, Barros LF, Sepúlveda FV (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276:43166–43174

    Article  CAS  PubMed  Google Scholar 

  35. Niemeyer MI, Cid LP, Peña-Münzenmayer G, Sepúlveda FV (2010) Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. J Biol Chem 285:16467–16475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Niemeyer MI, González-Nilo FD, Zúñiga L, González W, Cid LP, Sepúlveda FV (2007) Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel. Proc Natl Acad Sci U S A 104:666–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ortega-Sáenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, López-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135:379–392

    Article  PubMed Central  PubMed  Google Scholar 

  38. Perry SF, Abdallah S (2012) Mechanisms and consequences of carbon dioxide sensing in fish. Respir Physiol Neurobiol 184:309–315

    Article  CAS  PubMed  Google Scholar 

  39. Putnam RW, Filosa JA, Ritucci NA (2004) Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. Am J Physiol 287:C1493–C1526

    Article  CAS  Google Scholar 

  40. Qin Z, Lewis JE, Perry SF (2010) Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2. J Physiol 588:861–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M (1998) Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 273:30863–30869

    Article  CAS  PubMed  Google Scholar 

  42. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    CAS  PubMed  Google Scholar 

  43. Trapp S, Aller MI, Wisden W, Gourine AV (2008) A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci 28:8844–8850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Trapp S, Tucker SJ, Gourine AV (2011) Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16). Exp Physiol 96:451–459

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Vince JW, Reithmeier RA (1998) Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte Cl/HCO3 exchanger. J Biol Chem 273:28430–28437

    Article  CAS  PubMed  Google Scholar 

  46. Wang W, Pizzonia JH, Richerson GB (1998) Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J Physiol 511:433–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Warth R, Barrière H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, Guy N, Bendahhou S, Lesage F, Poujeol P, Barhanin J (2004) Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci U S A 101:8215–8220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wu J, Xu H, Shen W, Jiang C (2004) Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats. J Membr Biol 197:179–191

    Article  CAS  PubMed  Google Scholar 

  49. Xu H, Cui N, Yang Z, Qu Z, Jiang C (2000) Modulation of Kir4.1 and Kir5.1 by hypercapnia and intracellular acidosis. J Physiol 524:725–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yuan Y, Shimura M, Hughes BA (2003) Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH. J Physiol 549:429–438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT grant 1110774. The Centro de Estudios Científicos (CECs) is funded by Centers of Excellence Base Financing Program of Conicyt. We are grateful to Dr. Wendy González (Talca) for her help with molecular modeling work and to Carlos Bórquez for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pablo Cid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña-Münzenmayer, G., Niemeyer, M.I., Sepúlveda, F.V. et al. Zebrafish and mouse TASK-2 K+ channels are inhibited by increased CO2 and intracellular acidification. Pflugers Arch - Eur J Physiol 466, 1317–1327 (2014). https://doi.org/10.1007/s00424-013-1365-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1365-2

Keywords

Navigation