Skip to main content

Advertisement

Log in

Distinct functions of TMC channels: a comparative overview

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In the past two decades, transmembrane channel-like (TMC) proteins have attracted a significant amount of research interest, because mutations of Tmc1 lead to hereditary deafness. As evolutionarily conserved membrane proteins, TMC proteins are widely involved in diverse sensorimotor functions of many species, such as hearing, chemosensation, egg laying, and food texture detection. Interestingly, recent structural and physiological studies suggest that TMC channels may share a similar membrane topology with the Ca2+-activated Cl channel TMEM16 and the mechanically activated OSCA1.2/TMEM63 channel. Namely, these channels form dimers and each subunit consists of ten transmembrane segments. Despite this important structural insight, a key question remains: what is the gating mechanism of TMC channels? The major technical hurdle to answer this question is that the reconstitution of TMC proteins as functional ion channels has been challenging in mammalian heterologous systems. Since TMC channels are conserved across taxa, genetic studies of TMC channels in model organisms such as C. elegans, Drosophila, and zebrafish may provide us critical information on the physiological function and regulation of TMCs. Here, we present a comparative overview on the diverse functions of TMC channels in different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Keresztes G, Mutai H, Heller S (2003) TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins. BMC Genom 4(1):24

    Google Scholar 

  2. Kurima K et al (2003) Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics 82(3):300–308

    CAS  PubMed  Google Scholar 

  3. Deol M, Kocher W (1958) A new gene for deafness in the mouse. Heredity 12(4):463–466

    Google Scholar 

  4. Steel KP, Bock GR (1980) The nature of inherited deafness in deafness mice. Nature 288(5787):159–161

    CAS  PubMed  Google Scholar 

  5. Jain PK et al (1995) A human recessive neurosensory nonsyndromic hearing impairment locus is potential homologue of murine deafness (dn) locus. Hum Mol Genet 4(12):2391–2394

    CAS  PubMed  Google Scholar 

  6. Keats BJ, Nouri N, Huang JM, Money M, Webster DB, Berlin CI (1995) The deafness locus (dn) maps to mouse chromosome 19. Mamm Genome 6(1):8e10

    Google Scholar 

  7. Kurima K et al (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30(3):277–284

    PubMed  Google Scholar 

  8. Vreugde S et al (2002) Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat Genet 30(3):257–258

    PubMed  Google Scholar 

  9. Yue X et al (2018) TMC proteins modulate egg laying and membrane excitability through a background leak conductance in C. elegans. Neuron 97(3):571–585.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chatzigeorgiou M et al (2013) Tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494(7435):95–99

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L et al (2015) TMC-1 attenuates C. elegans development and sexual behaviour in a chemically defined food environment. Nat Commun 6:6345

    CAS  PubMed  Google Scholar 

  12. Wang X et al (2016) TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons. Neuron 91(1):146–154

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bargmann CI (2006) Chemosensation in C. elegans. WormBook pp 1–29

  14. Spalthoff C, Gopfert MC (2016) Sensing pH with TMCs. Neuron 91(1):6–8

    CAS  PubMed  Google Scholar 

  15. Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90(2):559–605

    CAS  PubMed  Google Scholar 

  16. Cochet-Bissuel M, Lory P, Monteil A (2014) The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci 8:132

    PubMed  PubMed Central  Google Scholar 

  17. Gao S et al (2015) The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion. Nat Commun 6:6323

    CAS  PubMed  Google Scholar 

  18. Lutas A et al (2016) The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons. Elife. https://doi.org/10.7554/eLife.15271

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xie L et al (2013) NLF-1 delivers a sodium leak channel to regulate neuronal excitability and modulate rhythmic locomotion. Neuron 77(6):1069–1082

    CAS  PubMed  Google Scholar 

  20. Lu B, Su Y, Das S, Liu J, Xia J, Ren D (2007) The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129(2):371–383

    CAS  PubMed  Google Scholar 

  21. Kawashima Y et al (2015) Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch 467(1):85–94

    CAS  PubMed  Google Scholar 

  22. Zhang YV et al (2016) The basis of food texture sensation in Drosophila. Neuron 91(4):863–877

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hasan Z (1992) Role of proprioceptors in neural control. Curr Opin Neurobiol 2(6):824–829

    CAS  PubMed  Google Scholar 

  24. Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3(10):781–790

    CAS  PubMed  Google Scholar 

  25. Tuthill JC, Azim E (2018) Proprioception. Curr Biol 28(5):R194–R203

    CAS  PubMed  Google Scholar 

  26. Guo Y et al (2016) Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc Natl Acad Sci U S A 113(26):7243–7248

    CAS  PubMed  PubMed Central  Google Scholar 

  27. He L et al (2019) Direction selectivity in Drosophila proprioceptors requires the mechanosensory channel Tmc. Curr Biol 29(6):945–956.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maeda R et al (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111(35):12907–12912

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitchem KL et al (2002) Mutation of the novel gene Tmie results in sensory cell defects in the inner ear of spinner, a mouse model of human hearing loss DFNB6. Hum Mol Genet 11(16):1887–1898

    CAS  PubMed  Google Scholar 

  30. Gleason MR et al (2009) The transmembrane inner ear (Tmie) protein is essential for normal hearing and balance in the zebrafish. Proc Natl Acad Sci USA 106(50):21347–21352

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho KI et al (2006) The circling mouse (C57BL/6J-cir) has a 40-kilobase genomic deletion that includes the transmembrane inner ear (tmie) gene. Comp Med 56(6):476–481

    CAS  PubMed  Google Scholar 

  32. Shin MJ et al (2010) Spatiotemporal expression of tmie in the inner ear of rats during postnatal development. Comp Med 60(4):288–294

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pacentine IV, Nicolson T (2019) Subunits of the mechano-electrical transduction channel, Tmc1/2b, require Tmie to localize in zebrafish sensory hair cells. PLoS Genet 15(2):e1007635

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Erickson T et al (2017) Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by transmembrane O-methyltransferase (Tomt). Elife. https://doi.org/10.7554/eLife.28474

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cunningham CL et al (2017) The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells. Elife. https://doi.org/10.7554/eLife.24318

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chou SW et al (2017) A molecular basis for water motion detection by the mechanosensory lateral line of zebrafish. Nat Commun 8(1):2234

    PubMed  PubMed Central  Google Scholar 

  37. Olszewski J et al (2012) Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS One 7(5):e36661

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawashima Y et al (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121(12):4796–4809

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Géléoc GS, Holt J (2003) Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nat Neurosci 6:1019–1020

    PubMed  PubMed Central  Google Scholar 

  40. Lelli A, Kazmierczak P, Kawashima Y, Muller U, Holt JR (2010) Development and regeneration of sensory transduction in auditory hair cells requires functional interaction between cadherin-23 and protocadherin-15. J Neurosci 30:11259–11269

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim KX et al (2013) The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels. J Gen Physiol 142(5):493–505

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pan B et al (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79(3):504–515

    CAS  PubMed  Google Scholar 

  43. Mahendrasingam S, Furness DN (2019) Ultrastructural localization of the likely mechanoelectrical transduction channel protein, transmembrane-like channel 1 (TMC1) during development of cochlear hair cells. Sci Rep 9(1):1274

    PubMed  PubMed Central  Google Scholar 

  44. Li X et al (2019) Localization of TMC1 and LHFPL5 in auditory hair cells in neonatal and adult mice. FASEB J 33:fj201802155RR

    Google Scholar 

  45. Kurima K et al (2015) TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 12(10):1606–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Beurg M, Fettiplace R, Nam JH, Ricci AJ (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12(5):553–558

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7(3):409–420

    CAS  PubMed  Google Scholar 

  48. Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2(1):1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Corns LF et al (2016) Tmc1 point mutation affects Ca2+ sensitivity and block by dihydrostreptomycin of the mechanoelectrical transducer current of mouse outer hair cells. J Neurosci 36(2):336–349

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Beurg M, Goldring AC, Fettiplace R (2015) The effects of Tmc1 Beethoven mutation on mechanotransducer channel function in cochlear hair cells. J Gen Physiol 146(3):233–243

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan B et al (2018) TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron 99(4):736–753.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cunningham CL, Muller U (2019) Molecular structure of the hair cell mechanoelectrical transduction complex. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a033167

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ge J et al (2018) Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. Elife. https://doi.org/10.7554/eLife.38770

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xiong W et al (2012) TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151(6):1283–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao B et al (2014) TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron 84(5):954–967

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fettiplace R (2016) Is TMC1 the hair cell mechanotransducer channel? Biophys J 111(1):3–9

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hahn Y et al (2009) Anoctamin and transmembrane channel-like proteins are evolutionarily related. Int J Mol Med 24(1):51–55

    CAS  PubMed  Google Scholar 

  58. Medrano-Soto A et al (2018) Bioinformatic characterization of the Anoctamin Superfamily of Ca2+ -activated ion channels and lipid scramblases. PLoS One 13(3):e0192851

    PubMed  PubMed Central  Google Scholar 

  59. Ballesteros A, Fenollar-Ferrer C, Swartz KJ (2018) Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. ELife. https://doi.org/10.7554/eLife.38433

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jojoa-Cruz S et al (2018) Cryo-EM structure of the mechanically activated ion channel OSCA1.2. Elife. https://doi.org/10.7554/eLife.41845

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lazarczyk M et al (2008) Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. J Exp Med 205(1):35–42

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sirianant L et al (2014) TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl currents. Cell Signal 26(12):2826–2833

    CAS  PubMed  Google Scholar 

  63. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413(6852):194–202

    CAS  PubMed  Google Scholar 

  64. Xiao R, Xu XZ (2010) Mechanosensitive channels: in touch with Piezo. Curr Biol 20(21):R936–R938

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Syeda R et al (2016) Piezo1 channels are inherently mechanosensitive. Cell Rep 17(7):1739–1746

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ranade SS, Syeda R, Patapoutian A (2015) Mechanically activated ion channels. Neuron 87(6):1162–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Corey DP, Akyuz N, Holt JR (2018) Function and dysfunction of TMC channels in inner ear hair cells. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a033506

    Article  Google Scholar 

  68. Kalay E et al (2005) Four novel TMC1 (DFNB7/DFNB11) mutations in Turkish patients with congenital autosomal recessive nonsyndromic hearing loss. Hum Mutat 26(6):591

    CAS  PubMed  Google Scholar 

  69. Meyer CG et al (2005) Novel TMC1 structural and splice variants associated with congenital nonsyndromic deafness in a Sudanese pedigree. Hum Mutat 25(1):100

    PubMed  Google Scholar 

  70. Santos RL et al (2005) Novel sequence variants in the TMC1 gene in Pakistani families with autosomal recessive hearing impairment. Hum Mutat 26(4):396

    PubMed  PubMed Central  Google Scholar 

  71. Kitajiri SI et al (2007) Identities, frequencies and origins of TMC1 mutations causing DFNB7/B11 deafness in Pakistan. Clin Genet 72(6):546–550

    PubMed  Google Scholar 

  72. Hilgert N et al (2008) Mutation analysis of TMC1 identifies four new mutations and suggests an additional deafness gene at loci DFNA36 and DFNB7/11. Clin Genet 74(3):223–232

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tlili A et al (2008) TMC1 but not TMC2 is responsible for autosomal recessive nonsyndromic hearing impairment in Tunisian families. Audiol Neurootol 13(4):213–218

    CAS  PubMed  Google Scholar 

  74. Sirmaci A et al (2009) Mutations in TMC1 contribute significantly to nonsyndromic autosomal recessive sensorineural hearing loss: a report of five novel mutations. Int J Pediatr Otorhinolaryngol 73(5):699–705

    PubMed  Google Scholar 

  75. Hildebrand MS et al (2010) Mutations in TMC1 are a common cause of DFNB7/11 hearing loss in the Iranian population. Ann Otol Rhinol Laryngol 119(12):830–835

    PubMed  PubMed Central  Google Scholar 

  76. Yang T et al (2010) A novel mutation adjacent to the Bth mouse mutation in the TMC1 gene makes this mouse an excellent model of human deafness at the DFNA36 locus. Clin Genet 77(4):395–398

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Brownstein Z et al (2011) Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in Middle Eastern families. Genome Biol 12(9):R89

    CAS  PubMed  PubMed Central  Google Scholar 

  78. de Heer AM et al (2011) Progressive sensorineural hearing loss and normal vestibular function in a Dutch DFNB7/11 family with a novel mutation in TMC1. Audiol Neurootol 16(2):93–105

    PubMed  Google Scholar 

  79. Duman D et al (2011) Screening of 38 genes identifies mutations in 62% of families with nonsyndromic deafness in Turkey. Genet Test Mol Biomark 15(1–2):29–33

    CAS  Google Scholar 

  80. Gao X et al (2013) Novel compound heterozygous TMC1 mutations associated with autosomal recessive hearing loss in a Chinese family. PLoS One 8(5):e63026

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schrauwen I et al (2013) A sensitive and specific diagnostic test for hearing loss using a microdroplet PCR-based approach and next generation sequencing. Am J Med Genet A 161A(1):145–152

    PubMed  Google Scholar 

  82. Yang T et al (2013) Genetic etiology study of the non-syndromic deafness in Chinese Hans by targeted next-generation sequencing. Orphanet J Rare Dis 8:85

    PubMed  PubMed Central  Google Scholar 

  83. Ganapathy A et al (2014) Non-syndromic hearing impairment in India: high allelic heterogeneity among mutations in TMPRSS3, TMC1, USHIC, CDH23 and TMIE. PLoS One 9(1):e84773

    PubMed  PubMed Central  Google Scholar 

  84. Lin F et al (2014) Autosomal recessive non-syndromic hearing loss is caused by novel compound heterozygous mutations in TMC1 from a Tibetan Chinese family. Int J Pediatr Otorhinolaryngol 78(12):2216–2221

    PubMed  Google Scholar 

  85. Nakanishi H et al (2014) Mutations of TMC1 cause deafness by disrupting mechanoelectrical transduction. Auris Nasus Larynx 41(5):399–408

    PubMed  PubMed Central  Google Scholar 

  86. Riahi Z et al (2014) Whole exome sequencing identifies new causative mutations in Tunisian families with non-syndromic deafness. PLoS One 9(6):e99797

    PubMed  PubMed Central  Google Scholar 

  87. Shafique S et al (2014) Genetic spectrum of autosomal recessive non-syndromic hearing loss in Pakistani families. PLoS One 9(6):e100146

    PubMed  PubMed Central  Google Scholar 

  88. Zhao Y et al (2014) A novel DFNA36 mutation in TMC1 orthologous to the Beethoven (Bth) mouse associated with autosomal dominant hearing loss in a Chinese family. PLoS One 9(5):e97064

    PubMed  PubMed Central  Google Scholar 

  89. Bakhchane A et al (2015) A novel mutation in the TMC1 gene causes non-syndromic hearing loss in a Moroccan family. Gene 574(1):28–33

    CAS  PubMed  Google Scholar 

  90. Chen Y et al (2015) Targeted next-generation sequencing in Uyghur families with non-syndromic sensorineural hearing loss. PLoS One 10(5):e0127879

    PubMed  PubMed Central  Google Scholar 

  91. Davoudi-Dehaghani E et al (2015) Allelic heterogeneity among Iranian DFNB7/11 families: report of a new Iranian deaf family with TMC1 mutation identified by next-generation sequencing. Acta Otolaryngol 135(2):125–129

    PubMed  Google Scholar 

  92. Gao X et al (2015) Targeted gene capture and massively parallel sequencing identify TMC1 as the causative gene in a six-generation Chinese family with autosomal dominant hearing loss. Am J Med Genet A 167A(10):2357–2365

    PubMed  Google Scholar 

  93. Bademci G et al (2016) Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deafness in a large multiethnic cohort. Genet Med 18(4):364–371

    CAS  PubMed  Google Scholar 

  94. Hu J et al (2016) Exome sequencing identifies a mutation in TMC1 as a novel cause of autosomal recessive nonsyndromic hearing loss. J Transl Med 14:29

    PubMed  PubMed Central  Google Scholar 

  95. Imtiaz A et al (2016) Recessive mutations of TMC1 associated with moderate to severe hearing loss. Neurogenetics 17(2):115–123

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Subrungruanga I et al (2013) Gene expression profiling of intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev 14(1):557–563

    PubMed  Google Scholar 

  97. Ramoz N et al (1999) A susceptibility locus for epidermodysplasia verruciformis, an abnormal predisposition to infection with the oncogenic human papillomavirus type 5, maps to chromosome 17qter in a region containing a psoriasis locus. J Invest Dermatol 112(3):259–263

    CAS  PubMed  Google Scholar 

  98. Ramoz N et al (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32(4):579–581

    CAS  PubMed  Google Scholar 

  99. Manji SS et al (2012) Identification of three novel hearing loss mouse strains with mutations in the Tmc1 gene. Am J Pathol 180(4):1560–1569

    CAS  PubMed  Google Scholar 

  100. Kim KX, Fettiplace R (2013) Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. J Gen Physiol 141(1):141–148

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work in the Xiao lab is supported by the American Cancer Society Research Scholar Grant (RSG-17-171-01-DMC), UF Center for Smell and Taste Pilot Grant, and the American Federation for Aging Research (AFAR) Research Grant (17146). The work in the Kang lab is supported by the National Foundation of Natural Science of China (31771113, 31900736, 31800878), the Fundamental Research Funds for the Central Universities (2018FZA7004), China Postdoctoral Science Foundation (2018M640551, 2018M642412, 2019T120503, 2019T120505), the 111 project, and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT31041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Kang or Rui Xiao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Sheng, Y., Kang, L. et al. Distinct functions of TMC channels: a comparative overview. Cell. Mol. Life Sci. 76, 4221–4232 (2019). https://doi.org/10.1007/s00018-019-03214-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03214-1

Keywords

Navigation