Skip to main content

DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man

  • Chapter
  • First Online:
Ion Channels in Biophysics and Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1349))

Abstract

DEG/ENaC channels are voltage-independent Na+/Ca2+ channels that are conserved across species and are expressed in many different cell types and tissues, where they contribute to a wide array of physiological functions from transepithelial Na+ transport, to sensory perception, and learning and memory. In this chapter, we focus on the members of this family that are expressed in the nervous system, grouping them based on their function. Structurally, DEG/ENaC channels are trimers formed by either identical or homologous subunits, each one protruding from the plasma membrane like a clenched hand. Crystallographic studies on chicken ASIC1a in the closed, inactivated, and open states revealed important details about the gating and permeation properties of these channels, and overall they show that the extracellular domain of the channel undergoes large conformational changes during gating. The vast majority of the channel’s extracellular domain is conserved across different members and species; however, key changes including the insertion of extra loops near the finger and palm domains most likely confers gating specificity. Indeed, DEG/ENaC channels are gated by a wide range of stimuli, including mechanical forces, protons, and peptides, owing to the wide array of physiological functions they serve. Interestingly, DEG/ENaC channels are not only expressed in neurons but also in glia. Work in C. elegans is now beginning to shed new light on the role of glial DEG/ENaC in the function of the nervous system and suggests that they may be implicated in controlling ionic concentrations in the extracellular microenvironment. Finally, DEG/ENaC channels can become toxic and cause neuronal death when they are hyperactivated by genetic mutations or prolonged acidosis causing them to contribute to neuronal demise in stroke and ischemia. Taken together, molecular, structural, and behavioral work on DEG/ENaC channels expressed in the nervous system of different species highlights the crucial role of these channels in neuronal function. These data place DEG/ENaC channels in an excellent position for being considered as drug targets for the treatment of several neurological conditions and disorders from pain to epilepsy and ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

    Article  CAS  PubMed  Google Scholar 

  2. Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593

    Article  CAS  PubMed  Google Scholar 

  3. Waldmann R, Champigny G, Voilley N, Lauritzen I, Lazdunski M (1996) The mammalian degenerin Mdeg, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem 271:10433–10436

    Article  CAS  PubMed  Google Scholar 

  4. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  CAS  PubMed  Google Scholar 

  5. Lingueglia E, Champigny G, Lazdunski M, Barbry P (1995) Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378:730–733

    Article  CAS  PubMed  Google Scholar 

  6. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323

    Article  CAS  PubMed  Google Scholar 

  7. Krauson AJ, Rued AC, Carattino MD (2013) Independent contribution of extracellular proton binding sites to ASIC1a activation. J Biol Chem 288:34375–34383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodman MB, Schwarz EM (2003) Transducing touch in Caenorhabditis elegans. Annu Rev Physiol 65:429–452

    Article  CAS  PubMed  Google Scholar 

  9. Zelle KM, Lu B, Pyfrom SC, Ben-Shahar Y (2013) The genetic architecture of degenerin/epithelial sodium channels in Drosophila. G3 (Bethesda) 3:441–450

    Article  CAS  Google Scholar 

  10. Ben-Shahar Y (2011) Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). Adv Genet 76:1–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Canessa CM, Merillat AM, Rossier BC (1994) Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol 267:C1682–C1690

    Article  CAS  PubMed  Google Scholar 

  12. Renard S, Lingueglia E, Voilley N, Lazdunski M, Barbry P (1994) Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J Biol Chem 269:12981–12986

    Article  CAS  PubMed  Google Scholar 

  13. Snyder PM, McDonald FJ, Stokes JB, Welsh MJ (1994) Membrane topology of the amiloride-sensitive epithelial sodium channel. J Biol Chem 269:24379–24383

    Article  CAS  PubMed  Google Scholar 

  14. Anantharam A, Palmer LG (2007) Determination of epithelial Na+ channel subunit stoichiometry from single-channel conductances. J Gen Physiol 130:55–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berdiev BK, Karlson KH, Jovov B, Ripoll PJ, Morris R, Loffing-Cueni D, Halpin P, Stanton BA, Kleyman TR, Ismailov II (1998) Subunit stoichiometry of a core conduction element in a cloned epithelial amiloride-sensitive Na+ channel. Biophys J 75:2292–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coscoy S, Lingueglia E, Lazdunski M, Barbry P (1998) The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer. J Biol Chem 273:8317–8322

    Article  CAS  PubMed  Google Scholar 

  17. Dijkink L, Hartog A, Van OS, van Os CH, Bindels RJ (2002) The epithelial sodium channel (ENaC) is intracellularly located as a tetramer. Pflugers Arch 444:549–555

    Article  CAS  PubMed  Google Scholar 

  18. Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L (1998) The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kosari F, Sheng S, Li J, Mak DO, Foskett JK, Kleyman TR (1998) Subunit stoichiometry of the epithelial sodium channel. J Biol Chem 273:13469–13474

    Article  CAS  PubMed  Google Scholar 

  20. Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ (1998) Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 273:681–684

    Article  CAS  PubMed  Google Scholar 

  21. Staruschenko A, Medina JL, Patel P, Shapiro MS, Booth RE, Stockand JD (2004) Fluorescence resonance energy transfer analysis of subunit stoichiometry of the epithelial Na+ channel. J Biol Chem 279:27729–27734

    Article  CAS  PubMed  Google Scholar 

  22. Li T, Yang Y, Canessa CM (2009) Interaction of the aromatics Tyr-72/Trp-288 in the interface of the extracellular and transmembrane domains is essential for proton gating of acid-sensing ion channels. J Biol Chem 284:4689–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matthewman C, Johnson CK, Miller DM 3rd, Bianchi L (2018) Functional features of the "finger" domain of the DEG/ENaC channels MEC-4 and UNC-8. Am J Physiol Cell Physiol 315:C155–C163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoder N, Yoshioka C, Gouaux E (2018) Gating mechanisms of acid-sensing ion channels. Nature 555:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arnadottir J, O'hagan R, Chen Y, Goodman MB, Chalfie M (2011) The DEG/ENaC protein MEC-10 regulates the transduction channel complex in Caenorhabditis elegans touch receptor neurons. J Neurosci 31:12695–12704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bianchi L, Gerstbrein B, Frokjaer-Jensen C, Royal DC, Mukherjee G, Royal MA, Xue J, Schafer WR, Driscoll M (2004) The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat Neurosci 7:1337–1344

    Article  CAS  PubMed  Google Scholar 

  27. Chatzigeorgiou M, Grundy L, Kindt KS, Lee WH, Driscoll M, Schafer WR (2010) Spatial asymmetry in the mechanosensory phenotypes of the C. elegans DEG/ENaC gene mec-10. J Neurophysiol 104:3334–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goodman MB, Ernstrom GG, Chelur DS, O'hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042

    Article  CAS  PubMed  Google Scholar 

  29. Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, Bianchi L, Lee WH, Wang Y, Israel S, Driscoll M (2008) Intersubunit interactions between mutant DEG/ENaCs induce synthetic neurotoxicity. Cell Death Differ 15:1794–1803

    Article  CAS  PubMed  Google Scholar 

  31. Brown AL, Fernandez-Illescas SM, Liao Z, Goodman MB (2007) Gain-of-function mutations in the MEC-4 DEG/ENaC sensory mechanotransduction channel alter gating and drug blockade. J Gen Physiol 129:161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, Hagan RO, Chalfie M (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420:669–673

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Bharill S, Isacoff EY, Chalfie M (2015) Subunit composition of a DEG/ENaC mechanosensory channel of Caenorhabditis elegans. Proc Natl Acad Sci U S A 112:11690–11695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang M, Gu G, Ferguson EL, Chalfie M (1995) A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378:292–295

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Bharill S, Altun Z, O'hagan R, Coblitz B, Isacoff EY, Chalfie M (2016) Caenorhabditis elegans paraoxonase-like proteins control the functional expression of DEG/ENaC mechanosensory proteins. Mol Biol Cell 27:1272–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstadt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103:17079–17086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lapatsina L, Jira JA, Smith ES, Poole K, Kozlenkov A, Bilbao D, Lewin GR, Heppenstall PA (2012b) Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons. Open Biol 2:120096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wetzel C, Hu J, Riethmacher D, Benckendorff A, Harder L, Eilers A, Moshourab R, Kozlenkov A, Labuz D, Caspani O, Erdmann B, Machelska H, Heppenstall PA, Lewin GR (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445:206–209

    Article  CAS  PubMed  Google Scholar 

  39. Wetzel C, Pifferi S, Picci C, Gok C, Hoffmann D, Bali KK, Lampe A, Lapatsina L, Fleischer R, Smith ES, Begay V, Moroni M, Estebanez L, Kuhnemund J, Walcher J, Specker E, Neuenschwander M, Von Kries JP, Haucke V, Kuner R, Poulet JF, Schmoranzer J, Poole K, Lewin GR (2017) Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nat Neurosci 20:209–218

    Article  CAS  PubMed  Google Scholar 

  40. Li T, Yang Y, Canessa CM (2011) Outlines of the pore in open and closed conformations describe the gating mechanism of ASIC1. Nat Commun 2:399

    Article  PubMed  CAS  Google Scholar 

  41. Yoder N, Gouaux E (2018) Divalent cation and chloride ion sites of chicken acid sensing ion channel 1a elucidated by x-ray crystallography. PloS One 13:e0202134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang P, Sigworth FJ, Canessa CM (2006) Gating of acid-sensitive ion channel-1: release of Ca2+ block vs. allosteric mechanism. J Gen Physiol 127:109–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kusama N, Harding AM, Benson CJ (2010) Extracellular chloride modulates the desensitization kinetics of acid-sensing ion channel 1a (ASIC1a). J Biol Chem 285:17425–17431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E (2014) X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell 156:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, Macdonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    Article  CAS  PubMed  Google Scholar 

  46. Gessmann R, Kourtis N, Petratos K, Tavernarakis N (2010) Molecular modeling of mechanosensory ion channel structural and functional features. PLoS One 5:e12814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296–18305

    Article  CAS  PubMed  Google Scholar 

  48. Baron A, Waldmann R, Lazdunski M (2002) ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol 539:485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brand J, Smith ES, Schwefel D, Lapatsina L, Poole K, Omerbasic D, Kozlenkov A, Behlke J, Lewin GR, Daumke O (2012) A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO J 31:3635–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lapatsina L, Brand J, Poole K, Daumke O, Lewin GR (2012a) Stomatin-domain proteins. Eur J Cell Biol 91:240–245

    Article  CAS  PubMed  Google Scholar 

  51. Lingueglia E, DE Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R, Lazdunski M (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272:29778–29783

    Article  CAS  PubMed  Google Scholar 

  52. Moshourab RA, Wetzel C, Martinez-Salgado C, Lewin GR (2013) Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol 591:5555–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Price MP, Thompson RJ, Eshcol JO, Wemmie JA, Benson CJ (2004) Stomatin modulates gating of acid-sensing ion channels. J Biol Chem 279:53886–53891

    Article  CAS  PubMed  Google Scholar 

  54. Sherwood TW, Lee KG, Gormley MG, Askwith CC (2011) Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci 31:9723–9734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vukicevic M, Kellenberger S (2004) Modulatory effects of acid-sensing ion channels on action potential generation in hippocampal neurons. Am J Physiol Cell Physiol 287:C682–C690

    Article  CAS  PubMed  Google Scholar 

  56. Wu LJ, Duan B, Mei YD, Gao J, Chen JG, Zhuo M, Xu L, Wu M, Xu TL (2004) Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 279:43716–43724

    Article  CAS  PubMed  Google Scholar 

  57. Stewart GW, Hepworth-Jones BE, Keen JN, Dash BC, Argent AC, Casimir CM (1992) Isolation of cDNA coding for an ubiquitous membrane protein deficient in high Na+, low K+ stomatocytic erythrocytes. Blood 79:1593–1601

    Article  CAS  PubMed  Google Scholar 

  58. Martinez-Salgado C, Benckendorff AG, Chiang LY, Wang R, Milenkovic N, Wetzel C, Hu J, Stucky CL, Parra MG, Mohandas N, Lewin GR (2007) Stomatin and sensory neuron mechanotransduction. J Neurophysiol 98:3802–3808

    Article  CAS  PubMed  Google Scholar 

  59. Brown AL, Liao Z, Goodman MB (2008) MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J Gen Physiol 131:605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang S, Arnadottir J, Keller C, Caldwell GA, Yao CA, Chalfie M (2004) MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 14:1888–1896

    Article  CAS  PubMed  Google Scholar 

  61. Sedensky MM, Siefker JM, Koh JY, Miller DM 3rd, Morgan PG (2004) A stomatin and a degenerin interact in lipid rafts of the nervous system of Caenorhabditis elegans. Am J Physiol Cell Physiol 287:C468–C474

    Article  CAS  PubMed  Google Scholar 

  62. Chalfie M, Wolinsky E (1990) The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345:410–416

    Article  CAS  PubMed  Google Scholar 

  63. Harbinder S, Tavernarakis N, Herndon LA, Kinnell M, Xu SQ, Fire A, Driscoll M (1997) Genetically targeted cell disruption in Caenorhabditis elegans. Proc Natl Acad Sci U S A 94:13128–13133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O'hagan R, Chalfie M (2006) Mechanosensation in Caenorhabditis elegans. Int Rev Neurobiol 69:169–203

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki H, Kerr R, Bianchi L, Frokjaer-Jensen C, Slone D, Xue J, Gerstbrein B, Driscoll M, Schafer WR (2003) In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39:1005–1017

    Article  CAS  PubMed  Google Scholar 

  66. Mackness MI, Mackness B, Durrington PN, Fogelman AM, Berliner J, Lusis AJ, Navab M, Shih D, Fonarow GC (1998) Paraoxonase and coronary heart disease. Curr Opin Lipidol 9:319–324

    Article  CAS  PubMed  Google Scholar 

  67. Reddy ST, Wadleigh DJ, Grijalva V, Ng C, Hama S, Gangopadhyay A, Shih DM, Lusis AJ, Navab M, Fogelman AM (2001) Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol 21:542–547

    Article  CAS  PubMed  Google Scholar 

  68. Shi S, Buck TM, Kinlough CL, Marciszyn AL, Hughey RP, Chalfie M, Brodsky JL, Kleyman TR (2017) Regulation of the epithelial Na+ channel by paraoxonase-2. J Biol Chem 292:15927–15938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chalfie M, Horvitz HR, Sulston JE (1981) Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24:59–69

    Article  CAS  PubMed  Google Scholar 

  70. Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 31:957–971

    Article  CAS  PubMed  Google Scholar 

  71. O'hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50

    Article  CAS  PubMed  Google Scholar 

  72. Kang S, Jang JH, Price MP, Gautam M, Benson CJ, Gong H, Welsh MJ, Brennan TJ (2012) Simultaneous disruption of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous mechanosensitivity. PLoS One 7:e35225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90:2227–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Geffeney SL, Cueva JG, Glauser DA, Doll JC, Lee TH, Montoya M, Karania S, Garakani AM, Pruitt BL, Goodman MB (2011) DEG/ENaC but not TRP channels are the major mechanoelectrical transduction channels in a C. elegans nociceptor. Neuron 71:845–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shreffler W, Magardino T, Shekdar K, Wolinsky E (1995) The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons. Genetics 139:1261–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tavernarakis N, Driscoll M (1997) Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu Rev Physiol 59:659–689

    Article  CAS  PubMed  Google Scholar 

  77. Adams CM, Anderson MG, Motto DG, Price MP, Johnson WA, Welsh MJ (1998) Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J Cell Biol 140:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ainsley JA, Pettus JM, Bosenko D, Gerstein CE, Zinkevich N, Anderson MG, ADAMS CM, Welsh MJ, Johnson WA (2003) Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr Biol 13:1557–1563

    Article  CAS  PubMed  Google Scholar 

  79. Guo Y, Wang Y, Wang Q, Wang Z (2014) The role of PPK26 in Drosophila larval mechanical nociception. Cell Rep 9:1183–1190

    Article  CAS  PubMed  Google Scholar 

  80. Tsubouchi A, Caldwell JC, Tracey WD (2012) Dendritic filopodia, Ripped Pocket, NOMPC, and NMDARs contribute to the sense of touch in Drosophila larvae. Curr Biol 22:2124–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM (2002) Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci U S A 99:2326–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dusenkova S, Ru F, Surdenikova L, Nassenstein C, Hatok J, Dusenka R, Banovcin P Jr, Kliment J, Tatar M, Kollarik M (2014) The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes. Am J Physiol Gastrointest Liver Physiol 307:G922–G930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garcia-Anoveros J, Samad TA, Zuvela-Jelaska L, Woolf CJ, Corey DP (2001) Transport and localization of the DeG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci 21:2678–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Price MP, Lewin GR, Mcilwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011

    Article  CAS  PubMed  Google Scholar 

  85. Price MP, Mcilwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  CAS  PubMed  Google Scholar 

  86. Xie J, Price MP, Wemmie JA, Askwith CC, Welsh MJ (2003) ASIC3 and ASIC1 mediate FMRFamide-related peptide enhancement of H+-gated currents in cultured dorsal root ganglion neurons. J Neurophysiol 89:2459–2465

    Article  CAS  PubMed  Google Scholar 

  87. Cabo R, Galvez MA, San Jose I, Laura R, Lopez-Muniz A, Garcia-Suarez O, Cobo T, Insausti R, Vega JA (2012) Immunohistochemical localization of acid-sensing ion channel 2 (ASIC2) in cutaneous Meissner and Pacinian corpuscles of Macaca fascicularis. Neurosci Lett 516:197–201

    Article  CAS  PubMed  Google Scholar 

  88. Page AJ, Brierley SM, Martin CM, Martinez-Salgado C, Wemmie JA, Brennan TJ, Symonds E, Omari T, Lewin GR, Welsh MJ, Blackshaw LA (2004) The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology 127:1739–1747

    Article  CAS  PubMed  Google Scholar 

  89. Jones NG, Slater R, Cadiou H, McNaughton P, McMahon SB (2004) Acid-induced pain and its modulation in humans. J Neurosci 24:10974–10979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rocha-Gonzalez HI, Herrejon-Abreu EB, Lopez-Santillan FJ, Garcia-Lopez BE, Murbartian J, Granados-Soto V (2009) Acid increases inflammatory pain in rats: effect of local peripheral ASICs inhibitors. Eur J Pharmacol 603:56–61

    Article  CAS  PubMed  Google Scholar 

  91. Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110:1185–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, Debayle D, Friend V, Alloui A, Lazdunski M, Lingueglia E (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490:552–555

    Article  CAS  PubMed  Google Scholar 

  93. Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, Voilley N, Blondeau N, Escoubas P, Gelot A, Cupo A, Zimmer A, Zimmer AM, Eschalier A, Lazdunski M (2007) A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci 10:943–945

    Article  CAS  PubMed  Google Scholar 

  94. Verkest C, Piquet E, Diochot S, Dauvois M, Lanteri-Minet M, Lingueglia E, Baron A (2018) Effects of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. Br J Pharmacol 175:4154–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sanchez EE, Burlingame AL, Basbaum AI, Julius D (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479:410–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang Y, Apicella A Jr, Lee SK, Ezcurra M, Slone RD, Goldmit M, Schafer WR, Shaham S, Driscoll M, Bianchi L (2008) A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans. EMBO J 27:2388–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu L, Leonard AS, Motto DG, Feller MA, Price MP, Johnson WA, Welsh MJ (2003) Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39:133–146

    Article  CAS  PubMed  Google Scholar 

  98. Lin H, Mann KJ, Starostina E, Kinser RD, Pikielny CW (2005) A Drosophila Deg/ENaC channel subunit is required for male response to female pheromones. Proc Natl Acad Sci U S A 102:12831–12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu T, Starostina E, Vijayan V, Pikielny CW (2012) Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship. J Neurosci 32:11879–11889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pikielny CW (2012) Sexy DEG/ENaC channels involved in gustatory detection of fruit fly pheromones. Sci Signal 5:e48

    Article  CAS  Google Scholar 

  101. Starostina E, Liu T, Vijayan V, Zheng Z, Siwicki KK, Pikielny CW (2012) A Drosophila DEG/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior. J Neurosci 32:4665–4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vijayan V, Thistle R, Liu T, Starostina E, Pikielny CW (2014) Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity. PLoS Genet 10:e1004238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ng R, Salem SS, Wu ST, Wu M, Lin HH, Shepherd AK, Joiner WJ, Wang JW, Su CY (2019) Amplification of Drosophila olfactory responses by a DEG/ENaC channel. Neuron

    Google Scholar 

  104. Liu T, Wang Y, Tian Y, Zhang J, Zhao J, Guo A (2018) The receptor channel formed by ppk25, ppk29 and ppk23 can sense the Drosophila female pheromone 7,11-heptacosadiene. Genes Brain Behav:e12529

    Google Scholar 

  105. Garcia-Anoveros J, Garcia JA, Liu JD, Corey DP (1998) The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron 20:1231–1241

    Article  CAS  PubMed  Google Scholar 

  106. Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci U S A 101:6752–6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hall DH, Gu G, Garcia-Anoveros J, Gong L, Chalfie M, Driscoll M (1997) Neuropathology of degenerative cell death in Caenorhabditis elegans. J Neurosci 17:1033–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bianchi L, Driscoll M (2006) Heterologous expression of C. elegans ion channels in Xenopus oocytes. WormBook:1–16

    Google Scholar 

  109. Hong K, Driscoll M (1994) A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367:470–473

    Article  CAS  PubMed  Google Scholar 

  110. Hong K, Mano I, Driscoll M (2000) In vivo structure-function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit. J Neurosci 20:2575–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pignataro G, Simon RP, Xiong ZG (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain 130:151–158

    Article  PubMed  Google Scholar 

  112. Wang YZ, Wang JJ, Huang Y, Liu F, Zeng WZ, Li Y, Xiong ZG, Zhu MX, Xu TL (2015) Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction. Elife 4

    Google Scholar 

  113. Wang YZ, Zeng WZ, Xiao X, Huang Y, Song XL, Yu Z, Tang D, Dong XP, Zhu MX, Xu TL (2013b) Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death. Cell Death Differ 20:1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N (2006) Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol 173:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Syntichaki P, Xu K, Driscoll M, Tavernarakis N (2002) Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419:939–944

    Article  CAS  PubMed  Google Scholar 

  116. Mari Y, Katnik C, Cuevas J (2010) ASIC1a channels are activated by endogenous protons during ischemia and contribute to synergistic potentiation of intracellular Ca(2+) overload during ischemia and acidosis. Cell Calcium 48:70–82

    Article  CAS  PubMed  Google Scholar 

  117. Matthewman C, Miller-Fleming TW, Miller DMR, Bianchi L (2016) Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels. Am J Physiol Cell Physiol 311:C920–C930

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang Y, Matthewman C, Han L, Miller T, Miller DM 3rd, Bianchi L (2013a) Neurotoxic unc-8 mutants encode constitutively active DEG/ENaC channels that are blocked by divalent cations. J Gen Physiol 142:157–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A, Fugger L (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13:1483–1489

    Article  CAS  PubMed  Google Scholar 

  120. Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, Esiri M, Fugger L (2011) Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 134:571–584

    Article  PubMed  Google Scholar 

  121. Wang IC, Chung CY, Liao F, Chen CC, Lee CH (2017) Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis. Sci Rep 7:42304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Miller-Fleming TW, Petersen SC, Manning L, Matthewman C, Gornet M, Beers A, Hori S, Mitani S, Bianchi L, Richmond J, Miller DM (2016) The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons. Elife 5

    Google Scholar 

  123. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity learning and memory. Neuron 34(3):463–477. https://doi.org/10.1016/S0896-6273(02)00661-X

    Article  CAS  PubMed  Google Scholar 

  124. Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci 101(10):3621–3626. https://doi.org/10.1073/pnas.0308753101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hill A, Zheng X, Li X, McKinney R, Dickman D, Ben-Shahar Y (2017) The drosophila postsynaptic DEG/ENaC Channel ppk29 contributes to excitatory neurotransmission. J Neurosci 37:3171–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Orr BO, Gorczyca D, Younger MA, Jan LY, Jan YN, Davis GW (2017) Composition and control of a DEG/ENaC channel during presynaptic homeostatic plasticity. Cell Rep 20:1855–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Younger MA, Muller M, Tong A, Pym EC, Davis GW (2013) A presynaptic ENaC channel drives homeostatic plasticity. Neuron 79:1183–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Formisano R, Mersha MD, Caplan J, Singh A, Rankin CH, Tavernarakis N, Dhillon HS (2020) Synaptic vesicle fusion is modulated through feedback inhibition by dopamine auto-receptors. Synapse 74:e22131

    Article  CAS  PubMed  Google Scholar 

  129. Voglis G, Tavernarakis N (2008) A synaptic DEG/ENaC ion channel mediates learning in C. elegans by facilitating dopamine signalling. EMBO J 27:3288–3299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA 3rd, Welsh MJ, Wemmie JA (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11:816–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Golestaneh N, DE Kozak Y, Klein C, Mirshahi M (2001) Epithelial sodium channel and the mineralocorticoid receptor in cultured rat Muller glial cells. Glia 33:160–168

    Article  CAS  PubMed  Google Scholar 

  132. Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT (2002) Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 283:C126–C134

    Article  CAS  PubMed  Google Scholar 

  133. Berdiev BK, Xia J, Mclean LA, Markert JM, Gillespie GY, Mapstone TB, Naren AP, Jovov B, Bubien JK, Ji HL, Fuller CM, Kirk KL, Benos DJ (2003) Acid-sensing ion channels in malignant gliomas. J Biol Chem 278:15023–15034

    Article  CAS  PubMed  Google Scholar 

  134. Bubien JK, Ji HL, Gillespie GY, Fuller CM, Markert JM, Mapstone TB, Benos DJ (2004) Cation selectivity and inhibition of malignant glioma Na+ channels by Psalmotoxin 1. Am J Physiol Cell Physiol 287:C1282–C1291

    Article  CAS  PubMed  Google Scholar 

  135. Kapoor N, Bartoszewski R, Qadri YJ, Bebok Z, Bubien JK, Fuller CM, Benos DJ (2009) Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. J Biol Chem 284:24526–24541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ross SB, Fuller CM, Bubien JK, Benos DJ (2007) Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells. Am J Physiol Cell Physiol 293:C1181–C1185

    Article  CAS  PubMed  Google Scholar 

  137. Tian Y, Bresenitz P, Reska A, El Moussaoui L, Beier CP, Grunder S (2017) Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3. Sci Rep 7:13674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hitomi Y, Suzuki A, Kawano Y, Nozawa-Inoue K, Inoue M, Maeda T (2009) Immunohistochemical detection of ENaCbeta in the terminal Schwann cells associated with the periodontal Ruffini endings of the rat incisor. Biomed Res 30:113–119

    Article  CAS  PubMed  Google Scholar 

  139. Calavia MG, Montano JA, Garcia-Suarez O, Feito J, Guervos MA, Germana A, Del Valle M, Perez-Pinera P, Cobo J, Vega JA (2010) Differential localization of Acid-sensing ion channels 1 and 2 in human cutaneus pacinian corpuscles. Cell Mol Neurobiol 30:841–848

    Article  CAS  PubMed  Google Scholar 

  140. Montano JA, Calavia MG, Garcia-Suarez O, Suarez-Quintanilla JA, Galvez A, Perez-Pinera P, Cobo J, Vega JA (2009) The expression of ENa(+)C and ASIC2 proteins in Pacinian corpuscles is differently regulated by TrkB and its ligands BDNF and NT-4. Neurosci Lett 463:114–118

    Article  CAS  PubMed  Google Scholar 

  141. Wang Y, D'urso G, Bianchi L (2012) Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons. J Neurophysiol 107:148–158

    Article  CAS  PubMed  Google Scholar 

  142. Han L, Wang Y, Sangaletti R, D'urso G, Lu Y, Shaham S, Bianchi L (2013) Two novel DEG/ENaC channel subunits expressed in glia are needed for nose-touch sensitivity in Caenorhabditis elegans. J Neurosci 33:936–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ilyinsky OB, Akoev GN, Krasnikova TL, Elman SI (1976) K and Na ion content in the Pacinian corpuscle fluid and its role in the activity of receptors. Pflugers Arch 361:279–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank all the trainees and colleagues who have contributed to the work which was conducted in my laboratory and is cited in this book chapter. I also thank Nicole Encalada for critical reading of the manuscript. Work in my laboratory has been supported by the National Institute of Health (NS105616, NS106951, NS081259, NS070969, and NS049511) and the American Cancer Society (RGS-09-043-01-DDC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchi, L. (2021). DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man. In: Zhou, L. (eds) Ion Channels in Biophysics and Physiology. Advances in Experimental Medicine and Biology, vol 1349. Springer, Singapore. https://doi.org/10.1007/978-981-16-4254-8_9

Download citation

Publish with us

Policies and ethics