Skip to main content
Log in

Cysteines in the loop between IS5 and the pore helix of CaV3.1 are essential for channel gating

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The role of six cysteines of CaV3.1 in channel gating was investigated. C241, C271, C282, C298, C313, and C323, located in the extracellular loop between segment IS5 and the pore helix, were each mutated to alanine; the resultant channels were expressed and studied by patch clamping in HEK293 cells. C298A and C313A conducted calcium currents, while the other mutants were not functional. C298A and C313A as well as double mutation C298/313A significantly reduced the amplitude of the calcium currents, shifted the activation curve in the depolarizing direction and slowed down channel inactivation. Redox agents dithiothreitol (DTT) and 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) shifted the current activation curve of wild-type channels in the hyperpolarizing direction. Activation curve for all mutated channels was shifted in hyperpolarizing direction by DTT while DTNB caused a depolarizing shift. Our study reveals that the cysteines we studied have an essential role in CaV3.1 gating. We hypothesize that cysteines in the large extracellular loop of CaV3.1 form bridges within the loop and/or neighboring channel segments that are essential for channel gating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arias O II, Vitko I, Fortuna M, Baumgart JP, Sokolova S, Shumilin IA, Van Deusen A, Soriano-Garcia M, Gomora JC, Perez-Reyes E (2008) Characterization of the gating brake in the I-II loop of Cav3.2 T-type Ca2+ channels. J Biol Chem 283:8136–8144

    Article  Google Scholar 

  2. Baumgart JP, Vitko I, Bidaud I, Kondratskyi A, Lory P, Perez-Reyes E (2008) I-II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels. PLoS ONE 3:e2976

    Article  PubMed  Google Scholar 

  3. Berrou L, Bernatchez G, Parent L (2001) Molecular determinants of inactivation within the I-II linker of α1E (CaV2.3) calcium channels. Biophys J 80:215–228

    Article  CAS  PubMed  Google Scholar 

  4. Bourinet E, Soong TW, Sutton K, Slaymaker S, Mathews E, Monteil A, Zamponi GW, Nargeot J, Snutch TP (1999) Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 2:407–415

    Article  CAS  PubMed  Google Scholar 

  5. Ellinor PT, Zhang JF, Randall AD, Zhou M, Schwarz TL, Tsien RW, Horne WA (1993) Functional expression of a rapidly inactivating neuronal calcium channel. Nature 363:455–458

    Article  CAS  PubMed  Google Scholar 

  6. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez-Gutierrez G, Miranda-Laferte E, Contreras G, Neely A, Hidalgo P (2010) Swapping the I-II intracellular linker between L-type CaV1.2 and R-type CaV2.3 high-voltage gated calcium channels exchanges activation attributes. Channels (Austin) 4:42–50

    CAS  Google Scholar 

  8. Hamid J, Peloquin JB, Monteil A, Zamponi GW (2006) Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV? Neuroscience 143:717–728

    Article  CAS  PubMed  Google Scholar 

  9. Herlitze S, Hockerman GH, Scheuer T, Catterall WA (1997) Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α1A subunit. Proc Natl Acad Sci U S A 94:1512–1516

    Article  CAS  PubMed  Google Scholar 

  10. Huguenard JR (1998) Low-voltage-activated (T-type) calcium-channel genes identified. Trends Neurosci 21:451–452

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Wang Q, Ni F, Ma J (2010) Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc Natl Acad Sci U S A 107:11352–11357

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243

    Article  CAS  PubMed  Google Scholar 

  13. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  14. Joksovic PM, Nelson MT, Jevtovic-Todorovic V, Patel MK, Perez-Reyes E, Campbell KP, Chen CC, Todorovic SM (2006) CaV3.2 is the major molecular substrate for redox regulation of T-type Ca2+ channels in the rat and mouse thalamus. J Physiol (Lond) 574:415–430

    Article  CAS  Google Scholar 

  15. Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW (2004) Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 279:9681–9684

    Article  CAS  PubMed  Google Scholar 

  16. Klugbauer N, Marais E, Lacinova L, Hofmann F (1999) A T-type calcium channel from mouse brain. Pflugers Arch 437:710–715

    Article  CAS  PubMed  Google Scholar 

  17. Kurejova M, Lacinova L, Pavlovicova M, Eschbach M, Klugbauer N (2007) The effect of the outermost basic residues in the S4 segments of the CaV3.1 T-type calcium channel on channel gating. Pflugers Arch 455:527–539

    Article  CAS  PubMed  Google Scholar 

  18. Lee WY, Orestes P, Latham J, Naik AK, Nelson MT, Vitko I, Perez-Reyes E, Jevtovic-Todorovic V, Todorovic SM (2009) Molecular mechanisms of lipoic acid modulation of T-type calcium channels in pain pathway. J Neurosci 29:9500–9509

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Stevens L, Klugbauer N, Wray D (2004) Roles of molecular regions in determining differences between voltage dependence of activation of CaV3.1 and CaV1.2 calcium channels. J Biol Chem 279:26858–26867

    Article  CAS  PubMed  Google Scholar 

  20. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    Article  CAS  PubMed  Google Scholar 

  21. Nelson MT, Woo J, Kang HW, Vitko I, Barrett PQ, Perez-Reyes E, Lee JH, Shin HS, Todorovic SM (2007) Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci 27:8250–8260

    Article  CAS  PubMed  Google Scholar 

  22. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    CAS  PubMed  Google Scholar 

  23. Shcheglovitov A, Vitko I, Bidaud I, Baumgart JP, Navarro-Gonzalez MF, Grayson TH, Lory P, Hill CE, Perez-Reyes E (2008) Alternative splicing within the I-II loop controls surface expression of T-type Cav3.1 calcium channels. FEBS Lett 582:3765–3770

    Article  CAS  PubMed  Google Scholar 

  24. Stary A, Shafrir Y, Hering S, Wolschann P, Guy HR (2008) Structural model of the CaV1.2 pore. Channels (Austin) 2:210–215

    Google Scholar 

  25. Stotz SC, Barr W, McRory JE, Chen L, Jarvis SE, Zamponi GW (2004) Several structural domains contribute to the regulation of N-type calcium channel inactivation by the β 3 subunit. J Biol Chem 279:3793–3800

    Article  CAS  PubMed  Google Scholar 

  26. Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456:891–897

    Article  CAS  PubMed  Google Scholar 

  27. Talavera K, Janssens A, Klugbauer N, Droogmans G, Nilius B (2003) Pore structure influences gating properties of the T-type Ca2+ channel α1G. J Gen Physiol 121:529–540

    Article  CAS  PubMed  Google Scholar 

  28. Talavera K, Nilius B (2006) Evidence for common structural determinants of activation and inactivation in T-type Ca2+ channels. Pflugers Arch 453:189–201

    Article  CAS  PubMed  Google Scholar 

  29. Talavera K, Staes M, Janssens A, Klugbauer N, Droogmans G, Hofmann F, Nilius B (2001) Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca2+ channel α1G. J Biol Chem 276:45628–45635

    Article  CAS  PubMed  Google Scholar 

  30. Todorovic SM, Jevtovic-Todorovic V, Meyenburg A, Mennerick S, Perez-Reyes E, Romano C, Olney JW, Zorumski CF (2001) Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31:75–85

    Article  CAS  PubMed  Google Scholar 

  31. Vitko I, Bidaud I, Arias JM, Mezghrani A, Lory P, Perez-Reyes E (2007) The I-II loop controls plasma membrane expression and gating of Cav3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci 27:322–330

    Article  CAS  PubMed  Google Scholar 

  32. Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11:835–841

    CAS  PubMed  Google Scholar 

  33. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

  34. Zhang Y (2009) Protein structure prediction: when is it useful? Curr Opin Struct Biol 19:145–155

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by grants from VEGA 2/0195, VVCE-0064-07, Center of Excellence for Cardiovascular Research SAS (LL) and the DFG (NK). The authors thank Emilia Kocurova and Ute Christoph for skillful technical assistance and Martina Kurejova for help with construction of C241A and C298A mutants and Eugen Timin for helpful comments on the manuscript.

Ethical standards

No specific ethical issues are related to reported experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubica Lacinova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.39 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmazinova, M., Beyl, S., Stary-Weinzinger, A. et al. Cysteines in the loop between IS5 and the pore helix of CaV3.1 are essential for channel gating. Pflugers Arch - Eur J Physiol 460, 1015–1028 (2010). https://doi.org/10.1007/s00424-010-0874-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0874-5

Keywords

Navigation