Skip to main content
Log in

Evidence for common structural determinants of activation and inactivation in T-type Ca2+ channels

  • Ion Channels
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

One of the most distinctive features of T-type Ca2+ channels is their fast inactivation. Recent structure–function studies indicate that the rate of macroscopic inactivation of these channels is influenced by several structural components, including intracellular linkers, transmembrane segments, and pore loops. The macroscopic inactivation of T-type channels is partially coupled to activation. It is therefore possible that changes in the rate of macroscopic inactivation after alteration in the structure of these channels might actually result from changes in activation kinetics. In this study, we use kinetic simulations to illustrate how the alteration of the rate of channel activation may lead to changes in the rate of macroscopic inactivation. By examining data pooled from several structure–function studies we demonstrate that gating modifications induced by alteration in the channel structure unveils a correlation between the time constants of macroscopic inactivation and activation. This analysis underscores the relevance of considering the inactivation–activation coupling when analyzing the structural determinants of T-type channel inactivation. Furthermore, we demonstrate that slow-inactivating mutants, with modifications in the IIIS6 segment and the proximal C terminus, display significant alterations in the voltage dependencies of activation and deactivation with respect to the wild type channel CaV3.1. Our results indicate that common structures, most likely the S6 transmembrane segments, are involved in the conformational changes occurring during both channel activation and inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burgess DE, Crawford O, Delisle BP, Satin J (2002) Mechanism of inactivation gating of human T-type (low-voltage activated) calcium channels. Biophys J 82:1894–1906

    PubMed  CAS  Google Scholar 

  2. Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502

    PubMed  CAS  Google Scholar 

  3. Carbone E, Lux HD (1987) Single low-voltage-activated calcium channels in chick and rat sensory neurones. J Physiol 386:571–601

    PubMed  CAS  Google Scholar 

  4. Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P (2001) Alternatively spliced α1G (CaV3.1) intracellular loops promote specific T-type Ca2+ channel gating properties. Biophys J 80:1238–1250

    PubMed  CAS  Google Scholar 

  5. Chemin J, Monteil A, Dubel S, Nargeot J, Lory P (2001) The α1I T-type calcium channel exhibits faster gating properties when overexpressed in neuroblastoma/glioma NG 108–15 cells. Eur J Neurosci 14:1678–1786

    Article  PubMed  CAS  Google Scholar 

  6. Chemin J, Monteil A, Lory P (2003) Functional specificity of T-type calcium channels and their roles in neuronal differentiation. J Soc Biol 197:235–247

    PubMed  CAS  Google Scholar 

  7. Chen CF, Hess P (1990) Mechanism of gating of T-type calcium channels. J Gen Physiol 96:603–630

    Article  PubMed  CAS  Google Scholar 

  8. Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW (2005) The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 562:121–129

    Article  PubMed  CAS  Google Scholar 

  9. Droogmans G, Nilius B (1989) Kinetic properties of the cardiac T-type calcium channel in the guinea-pig. J Physiol 419:627–650

    PubMed  CAS  Google Scholar 

  10. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535

    Article  PubMed  CAS  Google Scholar 

  11. Frazier CJ, Serrano JR, George EG, Yu X, Viswanathan A, Perez-Reyes E, Jones SW (2001) Gating kinetics of the α1I T-type calcium channel. J Gen Physiol 118:457–470

    Article  PubMed  CAS  Google Scholar 

  12. Gao L, Mi X, Paajanen V, Wang K, Fan Z (2005) Activation-coupled inactivation in the bacterial potassium channel KcsA. Proc Natl Acad Sci USA 102:17630–17635

    Article  PubMed  CAS  Google Scholar 

  13. Goldin AL (2003) Mechanisms of sodium channel inactivation. Curr Opin Neurobiol 13:284–290

    Article  PubMed  CAS  Google Scholar 

  14. Gomora JC, Murbartian J, Arias JM, Lee JH, Perez-Reyes E 2002) Cloning and expression of the human T-type channel CaV3.3: insights into prepulse facilitation. Biophys J 83:229–241

    Article  PubMed  CAS  Google Scholar 

  15. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  16. Hirano Y, Fozzard HA, January CT (1989) Inactivation properties of T-type calcium current in canine cardiac Purkinje cells. Biophys J 56:1007–1016

    PubMed  CAS  Google Scholar 

  17. Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58:329–348

    Article  PubMed  CAS  Google Scholar 

  18. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  PubMed  CAS  Google Scholar 

  19. Klugbauer N, Marais E, Lacinova L, Hofmann F (1999) A T-type calcium channel from mouse brain. Pflügers Arch 437:710–715

    Article  PubMed  CAS  Google Scholar 

  20. Kurata HT, Fedida D (2006) A structural interpretation of voltage-gated potassium channel inactivation. Prog Biophys Mol Biol (in press)

  21. Lacinova L, Klugbauer N, Hofmann F (2002) Gating of the expressed CaV3.1 calcium channel. FEBS Lett 531:235–240

    Article  PubMed  CAS  Google Scholar 

  22. Lam AD, Chikina MD, McNulty MM, Glaaser IW, Hanck DA (2005) Role of Domain IV/S4 outermost arginines in gating of T-type calcium channels. Pflugers Arch 451:349–361

    Article  PubMed  CAS  Google Scholar 

  23. Li J, Stevens L, Klugbauer N, Wray D (2004) Roles of molecular regions in determining differences between voltage dependence of activation of CaV3.1 and CaV1.2 calcium channels. J Biol Chem 279:26858–26867

    Article  PubMed  CAS  Google Scholar 

  24. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  25. Marksteiner R, Schurr P, Berjukow S, Margreiter E, Perez-Reyes E, Hering S (2001) Inactivation determinants in segment IIIS6 of CaV3.1. J Physiol 537:27–34

    Article  PubMed  CAS  Google Scholar 

  26. Murbartian J, Arias JM, Perez-Reyes E (2004) Functional impact of alternative splicing of human T-type CaV3.3 calcium channels. J Neurophysiol 92:3399–3407

    Article  PubMed  CAS  Google Scholar 

  27. Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446

    Article  PubMed  CAS  Google Scholar 

  28. Park JY, Kang HW, Jeong SW, Lee JH (2004) Multiple structural elements contribute to the slow kinetics of the CaV3.3 T-type channel. J Biol Chem 279:21707–21713

    Article  PubMed  CAS  Google Scholar 

  29. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  30. Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900

    Article  PubMed  CAS  Google Scholar 

  31. Serrano JR, Perez-Reyes E, Jones SW (1999) State-dependent inactivation of the α1G T-type calcium channel. J Gen Physiol 114:185–201

    Article  PubMed  CAS  Google Scholar 

  32. Shin KS, Maertens C, Proenza C, Rothberg BS, Yellen G (2004) Inactivation in HCN channels results from reclosure of the activation gate: desensitization to voltage. Neuron 41:737–744

    Article  PubMed  CAS  Google Scholar 

  33. Staes M, Talavera K, Klugbauer N, Prenen J, Lacinova L, Droogmans G, Hofmann F, Nilius B (2001) The amino side of the C-terminus determines fast inactivation of the T-type calcium channel α1G. J Physiol 530:35–45

    Article  PubMed  CAS  Google Scholar 

  34. Stotz SC, Jarvis SE, Zamponi GW (2004) Functional roles of cytoplasmic loops and pore lining transmembrane helices in the voltage-dependent inactivation of HVA calcium channels. J Physiol 554:263–273

    Article  PubMed  CAS  Google Scholar 

  35. Talavera K, Janssens A, Klugbauer N, Droogmans G, Nilius B (2003) Extracellular Ca2+ modulates the effects of protons on gating and conduction properties of the T-type Ca2+ channel α1G (CaV3.1). J Gen Physiol 121:511–528

    Article  PubMed  CAS  Google Scholar 

  36. Talavera K, Janssens A, Klugbauer N, Droogmans G, Nilius B (2003) Pore structure influences gating properties of the T-type Ca2+ channel α1G. J Gen Physiol 121:529–540

    Article  PubMed  CAS  Google Scholar 

  37. Talavera K, Staes M, Janssens A, Droogmans G, Nilius B (2004) Mechanism of arachidonic acid modulation of the T-type Ca2+ channel α1G. J Gen Physiol 124:225–238

    Article  PubMed  CAS  Google Scholar 

  38. Talavera K, Staes M, Janssens A, Klugbauer N, Droogmans G, Hofmann F, Nilius B (2001) Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca2+ channel α1G. J Biol Chem 276:45628–45635

    Article  PubMed  CAS  Google Scholar 

  39. Ulbricht W (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol Rev 85:1271–1301

    Article  PubMed  CAS  Google Scholar 

  40. Vassort G, Alvarez J (1994) Cardiac T-type calcium current: pharmacology and roles in cardiac tissues. J Cardiovasc Electrophysiol 5:376–393

    PubMed  CAS  Google Scholar 

  41. Vitko I, Chen Y, Arias JM, Shen Y, Wu XR, Perez-Reyes E (2005) Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci 25:4844–4855

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. N. Klugbauer and F. Hofmann for the CaV3.1 clone. We are also grateful to Dr. T. Voets and G. Droogmans for their helpful discussions. The technical assistance of A. Janssens and J. Prenen is greatly acknowledged. This work was supported by the Human Frontiers Science Programme (HFSP Research Grant Ref. RGP 32/2004), the Belgian Federal Government, the Flemish Government, and the Onderzoeksraad KU Leuven (GOA 2004/07, F.W.O. G. 0136.00; F.W.O. G.0172.03, Interuniversity Poles of Attraction Program, Prime Ministers Office IUAP Nr.3P4/23, Excellentiefinanciering EF/95/010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Talavera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 163 kb)

Fig. S2

(DOC 361 kb)

Fig. S3

(DOC 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talavera, K., Nilius, B. Evidence for common structural determinants of activation and inactivation in T-type Ca2+ channels. Pflugers Arch - Eur J Physiol 453, 189–201 (2006). https://doi.org/10.1007/s00424-006-0129-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0129-7

Keywords

Navigation