Skip to main content

Advertisement

Log in

Intracellular aquaporins: clues for intracellular water transport?

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are usually present at the plasma membrane to regulate influx and outflow of water and small molecules. They are important for the regulation of water homeostasis for the cells and organisms. AQPs are also present inside the cell, at the membranes of intracellular organelles. The roles of such AQPs have not yet been established. They will be clues to clarify the mechanisms of water and small solutes movements inside the cell. Recently, a new AQP subfamily has been identified with highly deviated asparagine–proline–alanine boxes, signature sequences for AQP. With limited homology less than 20%, this subfamily will be a superfamily of AQPs. Accordingly, it was tentatively named “superaquaporin subfamily,” which is so far only present in multicellular organisms including plants, insects, nematodes, and vertebrates. Some superaquaporins are functionally water channels and localized intracellularly. AQP11, one of the two superaquaporins in mammals, has been shown to be important for the development of the proximal tubule as its disruption produced neonatally fatal polycystic kidneys in mice. Hence, recent identification of intracellular AQPs will open new areas of research on cell biology and expand the scope of AQPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amiry-Moghaddam M, Lindland H, Zelenin S, Roberg BA, Gundersen BB, Petersen P, Rinvik E, Torgner IA, Ottersen OP (2005) Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J 19:1459–1467

    Article  PubMed  CAS  Google Scholar 

  2. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  PubMed  CAS  Google Scholar 

  3. Burghardt B, Nielsen S, Steward MC (2006) The role of aquaporin water channels in fluid secretion by the exocrine pancreas. J Membr Biol 210:143–153

    Article  PubMed  CAS  Google Scholar 

  4. Calamita G, Moreno M, Ferri D, Silvestri E, Roberti P, Schiavo L, Gena P, Svelto M, Goglia F (2007) Triiodothyronine modulates the expression of aquaporin-8 in rat liver mitochondria. J Endocrinol 192:111–120

    Article  PubMed  CAS  Google Scholar 

  5. Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M (2005) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280:17149–17153

    Article  PubMed  CAS  Google Scholar 

  6. Chaplin MF (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866

    Article  PubMed  CAS  Google Scholar 

  7. Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  PubMed  CAS  Google Scholar 

  8. Cho SJ, Sattar AK, Jeong EH, Satchi M, Cho JA, Dash S, Mayes MS, Stromer MH, Jena BP (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci USA 99:4720–4724

    Article  PubMed  CAS  Google Scholar 

  9. Cho SJ, Jena BP (2006) Secretory vesicle swelling by atomic force microscopy. Methods Mol Biol 319:317–330

    Article  PubMed  CAS  Google Scholar 

  10. Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X, Stolz DB, Shao ZM, Yin XM (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282:4702–4710

    Article  PubMed  CAS  Google Scholar 

  11. Elkjaer ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frokiaer J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol 281:F1047–F1057

    CAS  Google Scholar 

  12. Fullerton GD, Kanal KM, Cameron IL (2006) On the osmotically unresponsive water compartment in cells. Cell Biol Int 30:74–77

    Article  PubMed  CAS  Google Scholar 

  13. Gorelick DA, Praetorius J, Tsunenari T, Nielsen S, Agre P (2006) Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem 7:14

    Article  PubMed  CAS  Google Scholar 

  14. Halestrap AP (1989) The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta 973:355–382

    Article  PubMed  CAS  Google Scholar 

  15. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    Article  PubMed  CAS  Google Scholar 

  16. Ishibashi K, Kuwahara M, Kageyama Y, Tohsaka A, Marumo F, Sasaki S (1997) Cloning and functional expression of a second new aquaporin abundantly expressed in testis. Biochem Biophys Res Commun 237:714–718

    Article  PubMed  CAS  Google Scholar 

  17. Ishibashi K (2006) Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta 1758:989–993

    Article  PubMed  CAS  Google Scholar 

  18. Ishibashi K (2006) Aquaporin superfamily with unusual npa boxes: S-aquaporins (superfamily, sip-like and subcellular-aquaporins). Cell Mol Biol (Noisy-le-grand) 52(7):20–27

    CAS  Google Scholar 

  19. Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820

    PubMed  CAS  Google Scholar 

  20. Itoh T, Rai T, Kuwahara M, Ko SB, Uchida S, Sasaki S, Ishibashi K (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330:832–838

    Article  PubMed  CAS  Google Scholar 

  21. Jeremic A, Cho WJ, Jena BP (2005) Involvement of water channels in synaptic vesicle swelling. Exp Bio Med 230:674–680

    CAS  Google Scholar 

  22. Kaasik A, Safiulina D, Zharkovsky A, Veksler V (2007) Regulation of mitochondrial matrix volume. Am J Physiol 292:C157–C163

    Article  CAS  Google Scholar 

  23. Kelly ML, Cho WJ, Jeremic A, Abu-Hamdah R, Jena BP (2004) Vesicle swelling regulates content expulsion during secretion. Cell Biol Int 28:709–716

    Article  PubMed  CAS  Google Scholar 

  24. Lee WK, Bork U, Gholamrezaei F, Thévenod F (2005) Cd2+-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter. Am J Physiol 288:F27–F39

    CAS  Google Scholar 

  25. Lee WK, Thévenod F (2006) A role for mitochondrial aquaporins in cellular life-and-death decisions? Am J Physiol 291:C195–C202

    Article  CAS  Google Scholar 

  26. Li H, Kamiie J, Morishita Y, Yoshida Y, Yaoita E, Ishibashi K, Yamamoto T (2005) Expression and localization of two isoforms of AQP10 in human small intestine. Biol Cell 97:823–829

    Article  PubMed  CAS  Google Scholar 

  27. Ma T, Yang B, Kuo WL, Verkman AS (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35:543–550

    Article  PubMed  CAS  Google Scholar 

  28. Ma T, Jayaraman S, Wang KS, Song Y, Yang B, Li J, Bastidas JA, Verkman AS (2001) Defective dietary fat processing in transgenic mice lacking aquaporin-1 water channels. Am J Physiol 280:C126–C134

    CAS  Google Scholar 

  29. Matsuki M, Hashimoto S, Shimono M, Murakami M, Fujita-Yoshigaki J, Furuyama S, Sugiya H (2005) Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J Membr Biol 203:119–126

    Article  PubMed  CAS  Google Scholar 

  30. Matsuzaki T, Ablimit A, Suzuki T, Aoki T, Hagiwara H, Takata K (2006) Changes of aquaporin 5-distribution during release and reaccumulation of secretory granules in isoproterenol-treated mouse parotid gland. J Electron Microsc (Tokyo) 55:183–189

    Article  CAS  Google Scholar 

  31. McIntyre GI (2006) Cell hydration as the primary factor in carcinogenesis: a unifying concept. Med Hypotheses 66:518–526

    Article  PubMed  CAS  Google Scholar 

  32. Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K (2002) Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 294:630–634

    Article  PubMed  CAS  Google Scholar 

  33. Morishita Y, Sakube Y, Sasaki S, Ishibashi K (2004) Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J Pharmacol Sci 96:276–279

    Article  PubMed  CAS  Google Scholar 

  34. Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  PubMed  CAS  Google Scholar 

  35. Ohshiro K, Yaoita E, Yoshida Y, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Yamamoto T (2001) Expression and immunolocalization of AQP6 in intercalated cells of the rat kidney collecting duct. Arch Histol Cytol 64:329–338

    Article  PubMed  CAS  Google Scholar 

  36. Parvin MN, Kurabuchi S, Murdiastuti K, Yao C, Kosugi-Tanaka C, Akamatsu T, Kanamori N, Hosoi K (2005) Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner's gland of the rat duodenum. Am J Physiol 288:G1283–G1291

    CAS  Google Scholar 

  37. Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740

    Article  PubMed  CAS  Google Scholar 

  38. Piqueras AI, Somers M, Hammond TG, Strange K, Harris HW Jr, Gawryl M, Zeidel ML (1994) Permeability properties of rat renal lysosomes. Am J Physiol 266:C121–C133

    PubMed  CAS  Google Scholar 

  39. Ren Z, Riley NJ, Garcia EP, Sanders JM, Swanson GT, Marshall J (2003) Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J Neurosci 23:6608–6616

    PubMed  Google Scholar 

  40. Rojek AM, Skowronski MT, Fuchtbauer EM, Fuchtbauer AC, Fenton RA, Agre P, Frokiaer J, Nielsen S (2007) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci USA 104:3609–3614

    Article  PubMed  CAS  Google Scholar 

  41. Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301

    Article  PubMed  CAS  Google Scholar 

  42. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci USA 95:9660–9664

    Article  PubMed  CAS  Google Scholar 

  43. Schwartz SL, Johnson CB (1971) Pinocytosis as the cause of sucrose nephrosis. Nephron 8:246–254

    PubMed  CAS  Google Scholar 

  44. Van der Goot FG, Podevin RA, Corman BJ (1989) Water permeabilities and salt reflection coefficients of luminal, basolateral and intracellular membrane vesicles isolated from rabbit kidney proximal tubule. Biochim Biophys Acta 986:332–340

    Article  PubMed  CAS  Google Scholar 

  45. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3:944–950

    Article  PubMed  CAS  Google Scholar 

  46. Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768:688–693

    Article  PubMed  CAS  Google Scholar 

  47. Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol 288:C1161–C1170

    Article  CAS  Google Scholar 

  48. Yang B, Zhao D, Verkman AS (2006) Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem 281:16202–16206

    Article  PubMed  CAS  Google Scholar 

  49. Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P (1999) Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 96:5808–5813

    Article  PubMed  CAS  Google Scholar 

  50. Zinszner H, Kuroda M, Wang XZ, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Gene Dev 12:982–995

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Grants-in-Aids for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan and by Grants-in-Aids for Scientific Research on Creative Scientific Research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Ishibashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozaki, K., Ishii, D. & Ishibashi, K. Intracellular aquaporins: clues for intracellular water transport?. Pflugers Arch - Eur J Physiol 456, 701–707 (2008). https://doi.org/10.1007/s00424-007-0373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0373-5

Keywords

Navigation