Skip to main content

Comparative and Evolutionary Physiology of Water Channels

  • Chapter
Sodium and Water Homeostasis

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1231 Accesses

Abstract

Experiments with a variety of plant and animal tissues over the past 250 years have given rise to concepts of osmosis, osmotic pressure and permeability that are used to this day. The frog skin and mammalian red blood cells proved particularly useful in establishing that water transport across membranes was mediated by pores rather than simple diffusion. Comparative studies identified membrane intrinsic proteins (MIPs) in a variety of tissues that included red blood cells, bovine lens, plant cell membranes, fruit fly brain and microbial membranes. From these studies emerged the concept of water conducting channels called aquaporins (Aqps) that were present in virtually all living organisms. The discovery of Aqps and methodology for identifying them by RT-PCR cloning resulted in an enormous literature that provided mechanistic bases for physiological functions related to ionic and osmotic regulation. Among the vertebrates mammalian Aqps are the best studied due to their importance for biomedical issues such as diabetes insipidus and the availability of knock out (KO) models where specific deficiencies can be studied. From an evolutionary perspective, fish have multiple copies of most of the canonical Aqps that have been characterized in mammals. The development of genomic technologies is beginning to identify episodes of whole genome duplication, beginning in the earliest chordates, that resulted in the variety of Aqps that serve osmoregulatory functions in living vertebrate taxa. Comparative studies are beginning to describe how different Aqps have been coopted to osmoregulatory epithelia but more research is needed to understand the coordination of apical and basolateral membrane function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aföldi J et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587–591

    Article  CAS  Google Scholar 

  • Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3:5–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agre P, Saboori AM, Asimos A, Smith BL (1987) Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh(D) antigen. J Biol Chem 262:17497–17503

    CAS  PubMed  Google Scholar 

  • Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol 265:F461

    CAS  PubMed  Google Scholar 

  • Babonis LS, Miller SN, Evans DH (2011) Renal responses to salinity change in snakes with and without salt glands. J Exp Biol 214:2140–2156

    Article  CAS  PubMed  Google Scholar 

  • Babonis LS, Womack MC, Evans DH (2012) Morphology and putative function of the colon and cloaca of marine and freshwater snakes. J Morphol 273:88–102

    Article  PubMed  Google Scholar 

  • Belge H, Devuyst O (2006) Aquaporin-1—a water channel on the move. Nephrol Dial Transplant 21:2069–2071

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Popescu O, Pop VI (1986) p-(Chloromercuri)benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry 25:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Bentley PJ (1958) The effects of neurohypophyseal extracts on water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J Endocrinol 17:201–209

    Article  CAS  PubMed  Google Scholar 

  • Benton MJ (1998) The quality of the fossil record of vertebrates. In: Donovan SK, Paul CRC (eds) The quality of the fossil record. Wiley, Hoboken, NJ, p 312

    Google Scholar 

  • Bradshaw FJ, Bradshaw SD (1996) Arginine vasotocin: locus of action along the nephron of the ornate dragon lizard, Ctenophorus ornatus. Gen Comp Endocrinol 103:281–289

    Article  CAS  PubMed  Google Scholar 

  • Braun EJ (2009) Osmotic and ionic regulation in birds. In: Evans DH (ed) Osmotic and Ionic regulation cells and animals. CRC, Boca Raton, FL

    Google Scholar 

  • Broekhuyse RM, Kuhlmann ED, Stols ALH (1976) Lens membranes II. Isolation and characterization of the main intrinsic polypeptide (MIP) of bovine lens fiber membranes. Exp Eye Res 23:365–371

    Article  CAS  PubMed  Google Scholar 

  • Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol 284:F893–F901

    Article  CAS  Google Scholar 

  • Brunn F (1921) Beitrag zur Kenntnis der Wirkung yon hypophysenextrakten auf den Wasserhaushalt des Frosches. Zeit f Gesam Exp Med 25:120–125

    Google Scholar 

  • Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270:29063–29066

    Article  CAS  PubMed  Google Scholar 

  • Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M (2005) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280:17149–17153

    Article  CAS  PubMed  Google Scholar 

  • Campbell EM, Ball A, Hoppler S, Bowman AS (2008) Invertebrate aquaporins: a review. J Comp Physiol B 178:35–955

    Article  CAS  Google Scholar 

  • Carroll RL (2001) The origin and early radiation of terrestrial vertebrates. J Paleontol 75:1202–1213

    Article  Google Scholar 

  • Casotti G, Waldron T, Misquith G, Powers D, Slusher L (2007) Expression and localization of an aquaporin-1 homolog in the avian kidney and lower intestinal tract. Comp Biochem Physiol A Mol Integr Physiol 147:355–362

    Article  CAS  PubMed  Google Scholar 

  • Cerdà J, Finn RN (2010) Piscine aquaporins: an overview. J Exp Zool 313A:623–650

    Article  CAS  Google Scholar 

  • Chen Y, Rice W, Gu Z, Li J, Huang J, Brenner MB, Van Hoek A, Xiong J, Gunderson GG, Norman JC, Hsu VW, Fenton RA, Brown D, Lu HAJ (2012) Aquaporin 2 promotes cell migration and epithelial morphogenesis. J Am Soc Nephrol 23:1506–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier J, Bourget J, Hugon JS (1974) Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res 152:129–140

    Article  CAS  PubMed  Google Scholar 

  • Crane CM, Goldstein DL (2007) Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Mamm Genome 18:452–462

    Article  CAS  Google Scholar 

  • Cutler CP (2007) Cloning and identification of four aquaporin genes in the dogfish shark (Squalus acanthias). Bull Mt Desert Isl Biol Lab 46:19–20

    Google Scholar 

  • Cutler CP, Meischke L, Cramb G (2005) Evolutionary and comparative analysis of aquaporin water channels in fish. Bull Mt Desert Isl Biol Lab 44:55

    Google Scholar 

  • Cutler CP, Maclver B, Cramb G, Zeidel M (2012) Aquaporin 4 is ubiquitously expressed in the dogfish (Squalus acanthias) shark. Front Physiol 2:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dantzler WH, Bradshaw SD (2009) Osmotic and ionic regulation in reptiles. In: Evans DH (ed) Osmotic and Ionic regulation cells and animals. CRC, Boca Raton, FL

    Google Scholar 

  • Darwin C (1839) Journal of researches into the natural history and geography of the countries visited during the voyage of the HMS Beagle, around the world. Routledge, London

    Google Scholar 

  • Davis JR, DeNardo DF (2007) The urinary bladder as a physiological reservoir that moderates dehydration in a large desert lizard, the Gila monster Heloderma suspectum. J Exp Biol 210:1472–1480

    Article  PubMed  Google Scholar 

  • Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642

    CAS  PubMed  Google Scholar 

  • Dumas L, Kim YH, Karimpour-Fard A, Cox M, Hopkins J, Pollack JR, Sikela JM (2007) Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res 17:1266–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutrochet RJR (1827) Nouvelles observations sur l’endosmos et l’exosmos, et sur la cause de ce double phenomene. Anal Chim Phys 35:393–400

    Google Scholar 

  • Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, Knepper M (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 269:F663–F672

    CAS  PubMed  Google Scholar 

  • Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91:10997–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards WF (1824) De l’influence des agens physiques sur la vie. Crochard, Paris

    Book  Google Scholar 

  • Evans DH (ed) (2009) Osmotic and ionic regulation cells and animals. CRC, Boca Raton, FL

    Google Scholar 

  • Evans DH, Claiborne JB (2009) Osmotic and ionic regulation in fishes. In: Evans DH (ed) Osmotic and Ionic regulation cells and animals. CRC, Boca Raton, FL

    Google Scholar 

  • Fabra M, Raldua D, Power DM, Deen PM, Cerdà J (2005) Marine fish egg hydration is aquaporin-mediated. Science 307:545

    Article  CAS  PubMed  Google Scholar 

  • Finn RN, Chauvigne F, Baldur Hlidberg J, Cutler CP, Cerda J (2014) The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One 9(11):e113686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forrester JM (1995) Malpighi’s De Polypo Cordis: an annotated translation. Med Hist 39:477–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigeri A, Gropper MA, Turck CW, Verkman AS (1995) Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic membrane protein in epithelial cell plasma membranes. Proc Natl Acad Sci U S A 92:4328–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiyoshi Y, Mitsuoka A, de Groot BL, Phillippsen A, Grubmuller H, Agre P, Engel A (2002) Structure and function of water channels. Curr Opin Struct Biol 12:509–515

    Article  CAS  PubMed  Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat collecting tubule. Nature 361:549–552

    Article  CAS  PubMed  Google Scholar 

  • Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent exocytosis of the aquaporin 2 water channel. J Biol Chem 272:14800–14804

    Article  CAS  PubMed  Google Scholar 

  • Gonen T, Sliz P, Kistler J, Cheng YF, Waltz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  CAS  PubMed  Google Scholar 

  • Gorin WB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39:49–59

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Ma T, Verkman AS (2002) Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity and barrier recovery. J Biol Chem 277:46616–46621

    Article  CAS  PubMed  Google Scholar 

  • Hara-Chikuma M, Verkman AS (2008) Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol 28:326–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa T, Tanii H, Suzuki M, Tanaka S (2003) Regulation of water absorption in the frog skins by two vasotocin-dependent water channel aquaporins, AQP-h2 and AQP-h3. Endocrinology 144:4087–4096

    Article  CAS  PubMed  Google Scholar 

  • Hasler U (2009) Controlled aquaporin-2 expression in the hypertonic environment. Am J Physiol 296:C641–C653

    Article  CAS  Google Scholar 

  • Hays RM, Leaf A (1962) Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J Gen Physiol 45:905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellsten U et al (2010) The genome of the western clawed frog, Xenopus tropicalis. Science 328:633–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hevesy GV, Hofer E, Krogh A (1935) The permeability of the skin of frogs to water as determined by D2O and H2O. Skand Arch Physiol 72:199–214

    Article  Google Scholar 

  • Hewson R (1773) On the figure and composition of the red particles of the blood, commonly called the red globules. Philos Tran R Soc Lond 63:306–324

    Google Scholar 

  • Heymann JB, Agre P, Engel A (1998) Progress on the structure and function of aquaporin 1. J Struct Biol 121:191–206

    Article  CAS  PubMed  Google Scholar 

  • Hillman SS, Withers PC, Drewes RC, Hillyard SD (2009) Ecological and environmental physiology of amphibians. Oxford University Press, New York, p 469

    Google Scholar 

  • Hillyard SD (2012) Sensing meets separation: water transport across biological membranes. In: Nielsen CH (ed) Biomimetic membranes for sensor and separation applications, biological and medical physics, biomedical engineering. Springer, Amsterdam

    Google Scholar 

  • Hillyard SD, Møbjerg N, Tanaka S, Larsen EH (2009) Osmotic and ionic regulation in amphibians. In: Evans DH (ed) Osmotic and Ionic regulation cells and animals. CRC, Boca Raton, FL

    Google Scholar 

  • Hooke R (ed) (1664) Micrographia some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. Martyn and Allestry, London

    Google Scholar 

  • Huang CG, Lamitina T, Agre P, Strange K (2007) Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Am J Physiol 292:C1867–C1873

    Article  CAS  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91:6269–6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi K, Hara S, Kondo S (2009) Aquaporin water channels in mammals. Clin Exp Nephrol 13:107–117

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol 300:R566–R576

    CAS  Google Scholar 

  • Ishikawa Y, Yuan Z, Inuoe N, Skowronski MT, Nakae Y, Shono M, Cho G, Yasui M, Agre P, Nielsen S (2005) Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am J Physiol Cell Physiol 289:C1303–C1311

    Article  CAS  PubMed  Google Scholar 

  • Nollet (Abbé) JA (1752) Investigations on the causes for the ebullition of liquids. English translation, J Membr Sci 100:1–3 (1995)

    Google Scholar 

  • Jensen MØ, Dror RO, Xu H, Borhani DW, Arkin IT, Eastwood MP, Shaw DE (2008) Dynamic control of slow water transport by aquaporin 0: Implications for hydration and junction stability in the eye lens. Proc Natl Acad Sci U S A 105:14430–14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KD, Höfte H, Chrispeels MJ (1990) An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GlpF). Plant Cell 2:525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jørgensen CB (1997) 200 years of amphibian water economy: from Robert Townson to the present. Biol Rev 72:153–237

    Article  PubMed  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP28. The hourglass model. J Biol Chem 269:14648–14654

    CAS  PubMed  Google Scholar 

  • Kachadorian WA, Wade JB, Di Scala VA (1975) Vasopressin induced structural change in toad bladder luminal membrane. Science 190:67–69

    Article  CAS  PubMed  Google Scholar 

  • Kawedia JD, Nieman ML, Bolvin GP, Melvin JE, Kikuchi K-I, Hand AR, Lorenz JN, Menon AG (2007) Interaction between transcellular and paracellular water transport pathways through aquaporin 5 and the tight junction complex. Proc Natl Acad Sci 104:3621–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kistler J, Bullivant S (1980) Lens gap junctions and orthogonal arrays are unrelated. FEBS Lett 111:73–78

    Article  CAS  PubMed  Google Scholar 

  • Kleinzeller A (1996) William Hewson’s studies of red blood corpuscles and the evolving concept of a cell membrane. Am J Physiol 271:C1–C8

    CAS  PubMed  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1953) The contributions of diffusion and flow to the passage of D2O through living membranes. Acta Physiol Scand 28:60–76

    Article  CAS  PubMed  Google Scholar 

  • Konno N, Hyodo S, Yamaguchi Y, Matsuda K, Uchiyama M (2010) Vasotocin/V2-type receptor/aquaporin axis exists in African lungfish kidney but is functional only in terrestrial condition. Endocrinology 151:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Deaton LE, Onken H, O’Donnell M, Grosell M, Dantzler WH, Weihrauch D (2014) Osmoregulation and excretion. Compr Physiol 4:405–473

    Article  PubMed  Google Scholar 

  • Lillywhite H (2006) Water relations of tetrapod integument. J Exp Biol 202:222–226

    Google Scholar 

  • Mabel BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151–182

    Article  Google Scholar 

  • Macey RI, Farmer REI (1970) Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta 211:104–106

    Article  CAS  PubMed  Google Scholar 

  • Marshall AG (1978) Biophysical chemistry principles, techniques and applications. Wiley, New York

    Google Scholar 

  • Matteucci C, Cima A (1845) Memoire sur l’endosmose. Annal Chim et Phys 13:63–86

    Google Scholar 

  • Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Miramatsu S, Mizuno T (1989) Nucleotide sequence of the region encompassing the glpKF operon region containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res 17:4378

    Google Scholar 

  • Moon C, Preston GM, Griffin CA, Jabs EW, Agre P (1993) The human aquaporin gene. Structure, organization and chromosomal localization. J Biol Chem 21:15772–15778

    Google Scholar 

  • Müller C, Sendler M, Hildebrandt JP (2006) Downregulation of aquaporins 1 and 5 in nasal gland by osmotic stress in ducklings, Anas platyrhynchos: implications for the production of hypertonic fluid. J Exp Biol 209:4067–4076

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Nagy KA, Medica PA (1986) Physiological ecology of desert tortoises in southern Nevada. Herpetologica 42:73–92

    Google Scholar 

  • Nakatain Y, Takeda H, Kohara Y (2007) Reconstruction of the vertebrae ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265

    Article  CAS  Google Scholar 

  • Nielsen S, King LS, Christensen BM, Agre P (1997) Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Physiol 273:C1549–C1561

    CAS  PubMed  Google Scholar 

  • Nishimura H (2008) Urine concentration and avian aquaporin water channels. Pfleugers Arch 456:755–768

    Article  CAS  Google Scholar 

  • Nishimura H, Yang Y (2013) Aquaporins in avian kidneys: function and perspectives. Am J Physiol 305:R1201–R1214

    CAS  Google Scholar 

  • Ogushi Y, Mochida H, Nakakura T, Suzuki M, Tanaka S (2007) Immunocytochemical and phylogenetic analysis of vasotocin-dependent aquaporin, AQP-h2K, specifically expressed in the kidney of the tree frog, Hyla japonica. Endocrinology 148:5891–5901

    Article  CAS  PubMed  Google Scholar 

  • Ogushi Y, Tsuzuki A, Sato M, Mochida M, Okada R, Suzuki M, Hillyard SD, Tanaka S (2010a) The water-absorption region of ventral skin of several semiterrestrial and aquatic anuran amphibians identified by aquaporins. Am J Physiol 299:R1150–R1162

    CAS  Google Scholar 

  • Ogushi Y, Kitagawa D, Hasegawa T, Suzuki M, Tanaka S (2010b) Correlation between aquaporin and water permeability in response to vasotocin, hydrin, and beta-adrenergic effectors in the pelvic skin of the tree frog, Hyla japonica. J Exp Biol 213:288–294

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Book  Google Scholar 

  • Paganelli CV, Solomon AK (1957) The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol 41:259–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pao GM, Wu LF, Johnson KD, Hofte H, Chrispeels MJ, Sweet G, Sandal NN, Saier MH (1991) Evolution of the MIP family of integral membrane proteins. Mol Microbiol 5:33–37

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos MC, Verkman AS (2007) Aquaporin-4 and brain edema. Pediatr Nephrol 22:778–784

    Article  PubMed  Google Scholar 

  • Pfeffer W (ed) (1877) Osmotische Untersuchungen. Studien zur Zellmechanic. Engelmann, Leipzig

    Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A 88:11110–11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  • Rao Y, Jan LY, Jan YN (1990) Similarity of the product of the Drosophila neurogenic gene big brain to transmembrane channel proteins. Nature 345:163–167

    Article  CAS  PubMed  Google Scholar 

  • Reid EW (1890) Osmosis experiments with living and dead membranes. J Physiol 11:312–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romer AS (1962) The vertebrate body. WB Saunders, Philadelphia, PA, p 627

    Google Scholar 

  • San Mauro D, Vences M, Alcobendes M, Zardoya R, Meyer A (2005) Initial diversification of living amphibians predated the breakup of Pangaea. Am Nat 165:590–599

    Article  PubMed  Google Scholar 

  • Shibata Y, Takeuchi H-A, Hasegawa T, Suzuki M, Tanaka S, Hillyard SD, Nagai T (2011) Location of water channels in the skin of two species of desert toads, Anaxyrus (Bufo) punctatus and Incilius (Bufo) alvarius. Zool Sci 28:664–670

    Article  CAS  PubMed  Google Scholar 

  • Shibata Y, Sano T, Tsuchiya N, Okada R, Mochida H, Tanaka S, Suzuki M (2014) Gene expression and localization of two types of AQP5 in Xenopus tropicalis under hydration and dehydration. Am J Physiol 307:R44–R56

    CAS  Google Scholar 

  • Siner J, Paredes A, Hosselet C, Hammond T, Strange K, Harris HW (1996) Cloning of an aquaporin homolog present in water channel containing endosomes of toad urinary bladder. Am J Physiol 270:C372–C381

    CAS  PubMed  Google Scholar 

  • Smith BL, Agre P (1991) Erythrocyte 2Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem 266:6407–6415

    CAS  PubMed  Google Scholar 

  • Stadie WC, Sunderman FW (1931) The osmotic coefficient of sodium in sodium hemoglobinate and of sodium chloride in hemoglobin solution. J Biol Chem 91:227–241

    CAS  Google Scholar 

  • Steen WB (1929) On the permeability of the frog’s bladder to water. Anat Rec 43:215–220

    Article  Google Scholar 

  • Stetson DL, Lewis SA, Alles W, Wade JB (1982) Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder. Biochim Biophys Acta 689:267–274

    Article  CAS  PubMed  Google Scholar 

  • Sui H, Han BG, Lee JK, Wilian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Tanaka S (2009) Molecular and cellular regulation of water homeostasis in anuran amphibians by aquaporins. Comp Biochem Physiol A Mol Integr Physiol 153:231–241

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tanaka S (2010) Molecular diversity of vasotocin-dependent aquaporins closely associated with water adaptation strategy in anuran amphibians. J Neuroendocrinol 22:407–412

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Hasegawa T, Ogushi Y, Tanaka S (2007) Amphibian aquaporins and adaptation to terrestrial environments: a review. Comp Biochem Physiol 148A:72–81

    Article  CAS  Google Scholar 

  • Takemoto LJ, Hansen JS, Nicholson BJ, Hunkapiller M, Revel JP, Horwitz J (1983) Major intrinsic polypeptide of lens membrane biochemical and immunological characterization of the major cyanogen bromide fragment. Biochim Biophys Acta 731:267–274

    Article  CAS  PubMed  Google Scholar 

  • Tanii H, Hasegawa T, Hirakawa N, Suzuki M, Tanaka S (2002) Molecular and cellular characterization of a water channel protein AQP-h3, specifically expressed in ventral frog skin. J Mambr Biol 188:43–53

    Article  CAS  Google Scholar 

  • Taylor A, Mamelak M, Reaven E, Maffly R (1973) Vasopressin: possible role of microtubules and microfilaments in its action. Science 181:347–350

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajah JR, Zao D, Verkman AS (2007) Impaired enterocyte proliferation in aquaporin-3 deficiency in mouse models of colitis. Gut 56:1529–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigné F, Lozano J, Cerdà J (2010) The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 10:38–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Törnroth-Horsefield S, Hedfalk K, Fischer G, Lindkvist-Petersson K, Neutze R (2010) Structural insights into eukaryotic aquaporin regulation. FEBS Lett 584:2580–2588

    Article  PubMed  CAS  Google Scholar 

  • Townson R (1795) Physiological observations on the amphibia. Dissertation the second. Respiration continued with a fragment upon the subject of absorption, University of Edinburgh

    Google Scholar 

  • van Balkom BWM, van Raak M, Breton S, Pastor-Soler N, Bouley R, van der Sluijs P, Brown D, Deen PMT (2003) Hypertonicity is involved in redirecting the aquaporin-2 water channel into the basolateral, instead of the apical, plasma membrane of renal epithelial cells. J Biol Chem 278:1101–1107

    Article  PubMed  Google Scholar 

  • van Hoek AN, Horn ML, Luthjens LH, de Jong MD, Dempstert JA, van Os CH (1991) Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J Biol Chem 266:16633–16635

    PubMed  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van d Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci 101:1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van’t Hoff JH (1887) Die Rolle des osmotischen Druckesin der Analogie zwischen Losungenund Gasen. Z Phys Chem 1:481–508

    Google Scholar 

  • van’t Hoff JH (1901) Osmotic pressure and chemical equilibrium. Nobel Lecture, 13 December 1901

    Google Scholar 

  • Viborg A, Rosenkilde P (2004) Water potential receptors in the skin regulate blood perfusion in the ventral pelvic skin of toads. Physiol Biochem Zool 77:39–49

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tajkhorshid E (2007) Molecular mechanisms of conduction and selectivity in aquaporin water channels. J Nutr 137:1509S–1515S

    CAS  PubMed  Google Scholar 

  • Wang Y, Schluten K, Tajkhorshid E (2005) What makes an aquaporin a glycerol channel? A Comparative study of AqpZ and GlpF. Structure 13:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Gojobori T, Marumo F (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci 91:6269–6273

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580

    Article  CAS  PubMed  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    Article  CAS  PubMed  Google Scholar 

  • Zardoya R, Villalba S (2001) A phylogenetic framework for the aquaporin family in eukaryotes. J Mol Evol 52:391–404

    CAS  PubMed  Google Scholar 

  • Zeidel ML, Nielsen S, Smith BL (1994) Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 33:1606–1615

    Article  CAS  PubMed  Google Scholar 

  • Zhang RB, Logee KA, Verkman AS (1990) Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J Biol Chem 265:15375–15378

    CAS  PubMed  Google Scholar 

  • Zimmerman SL, Frisbie J, Goldstein DL, West J, Rivera K, Krane CM (2007) Ecretion of glycerol, and expression of aquaporins and glyceroporins, during cold acclimation in Cope’s gray tree frog Hyla chrysoscelis. Am J Physiol 292:R544–R555

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley D. Hillyard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Physiological Society

About this chapter

Cite this chapter

Hillyard, S.D. (2015). Comparative and Evolutionary Physiology of Water Channels. In: Hyndman, K., Pannabecker, T. (eds) Sodium and Water Homeostasis. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3213-9_2

Download citation

Publish with us

Policies and ethics