Skip to main content
Log in

Understanding the boron transport network in plants

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Boron is an essential nutrient for plants and has a largely structural role in development. Globally, there are large tracts of arable land that are deficient in boron, and others where plant growth is restricted by high and toxic boron concentrations. Plants have evolved a range of strategies to cope with deficiency and excess, and considerable genotypic variation exists in responses to variable boron supply.

Scope

Boron is available to plants as boric acid, a small molecule with a high membrane permeability compared to other mineral nutrients. As a result, its uptake and distribution in plants can be more difficult to control. This review examines the interconnecting network of processes that are employed by plants to try to achieve optimal growth under conditions where the boron supply may be low, adequate or potentially toxic.

Conclusions

The emerging picture of boron movement in plants is of a complex multi-layered system designed to optimise the use of boron over a broad range of concentrations. At the cellular level, plants can switch the direction of boron flow through the polar expression of membrane transporters, while at the whole plant level, integration of xylem and phloem transfer can deliver boron to specific tissues dependent on developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bowen JE (1972) Effect of environmental factors on water utilization and boron accumulation and translocation in sugarcane. Plant Cell Physiol 13:703–714

    CAS  Google Scholar 

  • Bramley H, Turner NC, Turner DW, Tyerman SD (2010) The contrasting influence of short-term hypoxia on the hydraulic properties of cells and roots of wheat and lupin. Funct Plant Biol 37:183–193

    Article  Google Scholar 

  • Brown P, Hu H (1994) Boron uptake by sunflower, squash and cultured tobacco cells. Physiol Plant 91:435–441

  • Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot 77:497–506

    Article  CAS  Google Scholar 

  • Cañon P, Aquea F, Rodríguez-Hoces de la Guardia A, Arce-Johnson P (2013) Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant 149:329–339

    PubMed  Google Scholar 

  • Chaumont F, Moshelion M, Daniels M (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Jian Feng M (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  CAS  PubMed  Google Scholar 

  • Collander R (1954) The permeability of Nitella cells to nonelectrolytes. Physiol Plant 7:420–445

    Article  CAS  Google Scholar 

  • Dainty J, Ginzburg B (1964) The permeability of the protoplasts of Chara australis and Nitella translucens to methanol, ethanol and iso-propanol. Biochim Biophys Acta 79:122–128

    CAS  PubMed  Google Scholar 

  • Dainty J, Hope AB (1959) The water permeability of cells of Chara australis R.Br. Aust J Biol Sci 12:136–145

    Google Scholar 

  • Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting t. J Membr Biol 175:95–105

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Brown PH (2001) Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant Soil 235:95–103

    Article  CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El-Motaium R, Hu H, Brown PH (1994) The relative tolerance of six Prunus rootstocks to boron and salinity. J Am Soc Hortic Sci 119:1169–1175

    CAS  Google Scholar 

  • Emebiri L, Michael P, Moody D (2009) Enhanced tolerance to boron toxicity in two-rowed barley by marker-assisted introgression of favourable alleles derived from Sahara 3771. Plant Soil 314:77–85

    Article  CAS  Google Scholar 

  • Findlay GP, Hope AB, Pitman MG, Smith FA, Walker NA (1969) Ionic fluxes in cells of Chara corallina. Biochim Biophys Acta Biomembr 183:565–576

    Article  CAS  Google Scholar 

  • Fitzpatrick KL, Reid R (2009) The involvement of aquaglyceroporins in transport of boron in barley root. Plant Cell Environ 32:1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Hayes JE, Reid RJ (2004) Boron tolerance in barley is mediated by efflux of B from the roots. Plant Physiol 136:3376–3382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu H, Brown PH (1994) Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiol 105:681–689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang L, Bell R, Dell B (2008) Evidence of phloem boron transport in response to interrupted boron supply in white lupin (Lupinus albus L. cv. Kiev Mutant) at the reproductive stage. J Exp Bot 59:575–583

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Matsunaga T (1996) Isolation and characterization of a boron–rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr Res 284:1–9

    Article  CAS  Google Scholar 

  • Jennings ML, Howren TR, Cui J, Winters M, Hannigan R (2007) Transport and regulatory characteristics of the yeast bicarbonate transporter homolog Bor1p. Am J Physiol Cell Physiol 293:C468–C476

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Matoh T, Azuma JI (1996) Two chains of rhamnogalacturonan II are cross-linked by borate–diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar K, Mosa K, Chhikara S, Musante C, White J, Dhankher O (2014) Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta 239:187–198

    Article  CAS  PubMed  Google Scholar 

  • Leaungthitikanchana S, Fujibe T, Tanaka M, Wang S, Sotta N, Takano J, Fujiwara T (2013) Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Plant Cell Physiol 54:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Matoh T (1997) Boron in plant cell walls. Plant Soil 193:59–70

    Article  CAS  Google Scholar 

  • Matoh T, Ochiai K (2005) Distribution and partitioning of newly taken-up boron in sunflower. Plant Soil 278:351–360

    Article  CAS  Google Scholar 

  • Matoh T, Takasaki M, Takabe K, Kobayashi M (1998) Immunocytochemistry of rhamnogalacturonan II in cell walls of higher plants. Plant Cell Physiol 39:483–491

    Article  CAS  Google Scholar 

  • McDonald G, Eglinton J, Barr A (2009) Assessment of the agronomic value of QTL on chromosomes 2H and 4H linked to tolerance to boron toxicity in barley (Hordeum vulgare L.). Plant Soil 326:275–290

    Article  Google Scholar 

  • Mitani N, Yamaji N, Ma J (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch - Eur J Physiol 456:679–686

    Article  CAS  Google Scholar 

  • Miwa K, Takano J, Fujiwara T (2005) Roles of BOR1 paralogs in boron transport in Arabidopsis thaliana. In: Li CJ (ed) Plant nutrition for food security, human health and environmental protection. Tsinghua University Press, Beijing, pp 124–125

    Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Wakuta S, Takada S, Ide K, Takano J, Naito S, Omori H, Matsunaga T, Fujiwara T (2013) Roles of BOR2, a boron exporter, in cross linking of Rhamnogalacturonan II and root elongation under boron limitation in Arabidopsis. Plant Physiol 163:1699–1709

    Article  CAS  PubMed  Google Scholar 

  • Nable R (1988) Resistance to boron toxicity amongst several barley and wheat cultivars: a preliminary examination of the resistance mechanism. Plant Soil 112:45–52

    Article  CAS  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nuttall JG, Hobson KB, Materne M, Moody DB, Munns R, Armstrong RD (2010) Use of genetic tolerance in grain crops to overcome subsoil constraints in alkaline cropping soils. Aust J Soil Res 48:188–199

    Article  Google Scholar 

  • O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849

    Article  PubMed  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  Google Scholar 

  • Oertli JJ (1993) The mobility of boron in plants. Plant Soil 155–156:301–304

    Article  Google Scholar 

  • Oertli JJ, Kohl H (1961) Some considerations about the tolerance of various plant species to excessive supplies of boric acid in plants. Soil Sci 92:243–247

    Article  CAS  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397

    Article  CAS  PubMed  Google Scholar 

  • Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H, Tapia J, Fujiwara T, González E (2012) VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol 53:485–494

    Article  PubMed  Google Scholar 

  • Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678

    Article  CAS  PubMed  Google Scholar 

  • Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 151:413–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reid RJ, Mimura T, Ohsumi Y, Walker NA, Smith FA (2000) Phosphate uptake in Chara: membrane transport via Na/Pi cotransport. Plant Cell Environ 23:223–228

    Article  CAS  Google Scholar 

  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 27:1405–1414

    Article  CAS  Google Scholar 

  • Rerkasem B, Jamjod S (2004) Boron deficiency in wheat: a review. Field Crop Res 89:173–186

    Article  Google Scholar 

  • Sakamoto T, Inui Y, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011) Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 23:3533–3546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shorrocks V (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Stangoulis JCR, Reid RJ, Brown PH, Graham RD (2001) Kinetic analysis of boron transport in Chara. Planta 213:142–146

    Article  CAS  PubMed  Google Scholar 

  • Stangoulis J, Tate M, Graham R, Bucknall M, Palmer L, Boughton B, Reid R (2010) The mechanism of boron mobility in wheat and canola phloem. Plant Physiol 153:876–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci U S A 102:12276–12281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed Central  PubMed  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci U S A 107:5220–5225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H, Naito S, Fujiwara T (2011) Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23:3547–3559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka N, Uraguchi S, Saito A, Kajikawa M, Kasai K, Sato Y, Nagamura Y, Fujiwara T (2013) Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process. Plant Cell Physiol 54:2011–2019

    Article  CAS  PubMed  Google Scholar 

  • Uraguchi S, Fujiwara T (2011) Significant contribution of boron stored in seeds to initial growth of rice seedlings. Plant Soil 340:435–442

    Article  CAS  Google Scholar 

  • Yan X, Wu P, Ling H, Hu G, Xu F, Zhang Q (2006) Plant nutriomics in China: an overview. Ann Bot 98:473–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yau SK, Ryan J (2008) Boron toxicity tolerance in crops: a viable alternative to soil amelioration. Crop Sci 48:854–865

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Reid.

Additional information

Responsible Editor: Philippe Hinsinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, R. Understanding the boron transport network in plants. Plant Soil 385, 1–13 (2014). https://doi.org/10.1007/s11104-014-2149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2149-y

Keywords

Navigation