Skip to main content
Log in

Passive force enhancement in single myofibrils

  • Skeletal Muscle
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to gain further insight into passive force enhancement by testing whether passive force enhancement occurs in single myofibrils. Myofibrils (n = 6) isolated from rabbit psoas muscle were fixed at a sarcomere length of 2.4 μm, and then stretched passively and actively to a sarcomere length of 3.4 μm. Passive force after deactivation of the myofibrils was increased after active compared to passive stretching. Therefore, passive force enhancement, previously observed in muscle and fiber preparations, also occurs in single myofibrils. Passive force enhancement in myofibrils ranged from 86 to 145% of the steady-state force observed after passive stretch. Because titin is the main source of passive force in myofibrils, we propose that titin might be responsible for passive force enhancement observed in myofibrils. We propose that this might occur through an increase in stiffness when calcium concentration increases upon activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbott BC, Aubert XM (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117:77–86

    PubMed  CAS  Google Scholar 

  2. Bartoo ML, Linke WA, Pollack GH (1997) Basis of passive tension and stiffness in isolated rabbit myofibrils. Am J Physiol 273:C266–C276

    PubMed  CAS  Google Scholar 

  3. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitas K, Labeit S, Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67

    PubMed  CAS  Google Scholar 

  4. Edman KA, Elzinga G, Noble MI (1982) Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol 80:769–784

    Article  PubMed  CAS  Google Scholar 

  5. Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86:1114–1121

    PubMed  CAS  Google Scholar 

  6. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  7. Granzier H, Helmes M, Cazorla O, McNabb M, Labeit D, Wu Y, Yamasaki R, Redkar A, Kellermayer M, Labeit S, Trombitas K (2000) Mechanical properties of titin isoforms. Adv Exp Med Biol 481:283–300

    PubMed  CAS  Google Scholar 

  8. Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044

    PubMed  CAS  Google Scholar 

  9. Granzier HL, Wang K (1993) Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys J 65:2141–2159

    PubMed  CAS  Google Scholar 

  10. Herzog W, Leonard TR (2002) Force enhancement following stretching of skeletal muscle: a new mechanism. J Exp Biol 205:1275–1283

    PubMed  CAS  Google Scholar 

  11. Herzog W, Leonard TR (2000) The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. J Biomech 33:531–542

    Article  PubMed  CAS  Google Scholar 

  12. Herzog W, Leonard TR, Renaud JM, Wallace J, Chaki G, Bornemisza S (1992) Force-length properties and functional demands of cat gastrocnemius, soleus and plantaris muscles. J Biomech 25:1329–1335

    Article  PubMed  CAS  Google Scholar 

  13. Herzog W, Schachar R, Leonard TR (2003) Characterization of the passive component of force enhancement following active stretching of skeletal muscle. J Exp Biol 206:3635–3643

    Article  PubMed  CAS  Google Scholar 

  14. Higuchi H, Umazume Y (1985) Localization of the parallel elastic components in frog skinned muscle fibers studied by the dissociation of the A- and I-bands. Biophys J 48:137–147

    PubMed  CAS  Google Scholar 

  15. Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61:392–398

    PubMed  CAS  Google Scholar 

  16. Horowits R, Kempner ES, Bisher ME, Podolsky RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164

    Article  PubMed  CAS  Google Scholar 

  17. Kovanen V, Suominen H, Heikkinen E (1984) Mechanical properties of fast and slow skeletal muscle with special reference to collagen and endurance training. J Biomech 17:725–735

    Article  PubMed  CAS  Google Scholar 

  18. Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H (2003) Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci USA 100:13716–13721

    Article  PubMed  CAS  Google Scholar 

  19. Lee EJ, Joumaa V, Herzog W (2007) New insights into the passive force enhancement in skeletal muscles. J Biomech 40:719–727

    Article  PubMed  Google Scholar 

  20. Lee HD, Herzog W (2002) Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis. J Physiol 545:321–330

    Article  PubMed  CAS  Google Scholar 

  21. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71

    Article  PubMed  CAS  Google Scholar 

  22. Linke WA, Popov VI, Pollack GH (1994) Passive and active tension in single cardiac myofibrils. Biophys J 67:782–792

    Article  PubMed  CAS  Google Scholar 

  23. Morgan DL, Whitehead NP, Wise AK, Gregory JE, Proske U (2000) Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle. J Physiol 522(Pt 3):503–513

    Article  PubMed  CAS  Google Scholar 

  24. Opitz CA, Kulke M, Leake MC, Neagoe C, Hinssen H, Hajjar RJ, Linke WA (2003) Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proc Natl Acad Sci USA 100:12688–12693

    Article  PubMed  CAS  Google Scholar 

  25. Rapoport SI (1973) The anisotropic elastic properties of the sarcolemma of the frog semitendinosus muscle fiber. Biophys J 13:14–36

    PubMed  CAS  Google Scholar 

  26. Rassier DE, Herzog W (2004) Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM. J Appl Physiol 97:1395–1400

    Article  PubMed  Google Scholar 

  27. Rassier DE, Herzog W, Pollack GH (2003) Dynamics of individual sarcomeres during and after stretch in activated single myofibrils. Proc Biol Sci 270:1735–1740

    Article  PubMed  Google Scholar 

  28. Rassier DE, Herzog W, Wakeling J, Syme DA (2003) Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length. J Biomech 36:1309–1316

    Article  PubMed  Google Scholar 

  29. Rassier DE, Lee EJ, Herzog W (2005) Modulation of passive force in single skeletal muscle fibres. Biol Lett 1:342–345

    Article  PubMed  Google Scholar 

  30. Tatsumi R, Maeda K, Hattori A, Takahashi K (2001) Calcium binding to an elastic portion of connectin/titin filaments. J Muscle Res Cell Motil 22:149–162

    Article  PubMed  CAS  Google Scholar 

  31. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank H. M. Brattberg and A. Jinha for their technical assistance. The financial support of Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), and the Canada Research Chair Program is greatly acknowledged.

The nanolevers used in this study were constructed at the Cornell NanoScale Facility, which is supported by the National Science Foundation (grant ECS 03-35765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Herzog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joumaa, V., Rassier, D.E., Leonard, T.R. et al. Passive force enhancement in single myofibrils. Pflugers Arch - Eur J Physiol 455, 367–371 (2007). https://doi.org/10.1007/s00424-007-0287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0287-2

Keywords

Navigation