Skip to main content
Log in

Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Recently, a novel type of anion channel activated by extracellular acidification has been found in a variety of mammalian cell types. However, the role of this acid-sensitive outwardly rectifying (ASOR) anion channel is not known. In human epithelial HeLa cells, reduction in extracellular pH below 5 rapidly activated anion-selective whole-cell currents. The currents exhibited strong outward rectification, activation kinetics at positive potentials, low-field anion selectivity, and sensitivity to 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and phloretin. When outside-out patches were exposed to acidic bathing solution, single-channel events of the anion channel could be observed. The unitary conductance was 4.8 pS in the voltage range between −80 and +80 mV. The single-channel activity prominently increased with depolarization and was suppressed by DIDS or phloretin. After 1-h incubation in acidic solution (pH 4.5), a significant population of HeLa cells suffered from necrotic cell injury characterized by stainability with propidium iodide and lack of caspase-3 activation. Upon exposure to acidic solution, HeLa cells exhibited immediate, persistent swelling. Both the necrotic volume increase and cell injury induced by extracellular acidification were inhibited by DIDS or phloretin. Therefore, it is concluded that the ASOR anion channel is involved in the genesis of necrotic cell injury induced by acidosis in human epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Argenzio RA, Eisemann J (1996) Mechanisms of acid injury in porcine gastroesophageal mucosa. Am J Vet Res 57:564–573

    PubMed  CAS  Google Scholar 

  2. Auzanneau C, Thoreau V, Kitzis A, Becq F (2003) A novel voltage dependent chloride current activated by extracellular acidic pH in cultured rat Sertoli cells. J Biol Chem 278:19230–19236

    Article  PubMed  CAS  Google Scholar 

  3. Baron A, Pacaud P, Loirand G, Mironneau C, Mironneau J (1991) Pharmacological block of Ca2+-activated Cl current in rat vascular smooth muscle cells in short-term primary culture. Pflügers Arch 419:553–558

    Article  PubMed  CAS  Google Scholar 

  4. Barros LF, Hermosilla T, Castro J (2001) Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol 130:401–409

    CAS  Google Scholar 

  5. Chen MF, Chen TY (2001) Different fast-gate regulation by external Cl and H+ of the muscle-type ClC chloride channels. J Gen Physiol 118:23–32

    Article  PubMed  CAS  Google Scholar 

  6. Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. Trends Neurosci 15:396–402

    Article  PubMed  CAS  Google Scholar 

  7. Davis JN, Antonawich FJ (1997) Role of apoptotic proteins in ischemic hippocampal damage. Ann N Y Acad Sci 835:309–320

    Article  PubMed  CAS  Google Scholar 

  8. Diewald L, Rupp J, Dreger M, Hucho F, Gillen C, Nawrath H (2002) Activation by acidic pH of CLC-7 expressed in oocytes from Xenopus laevis. Biochem Biophys Res Commun 291:421–424

    Article  PubMed  CAS  Google Scholar 

  9. Ding D, Moskowitz SI, Li R, Lee SB, Esteban M, Tomaselli K, Chan J, Bergold PJ (2000) Acidosis induces necrosis and apoptosis of cultured hippocampal neurons. Exp Neurol 162:1–12

    Article  PubMed  CAS  Google Scholar 

  10. Eladari D, Blanchard A, Leviel F, Paillard M, Stuart-Tilley AK, Alper SL, Podevin RA (1998) Functional and molecular characterization of luminal and basolateral \({{\text{Cl}}^{ - } } \mathord{\left/ {\vphantom {{{\text{Cl}}^{ - } } {{\text{HCO}}^{ - }_{{\text{3}}} }}} \right. \kern-\nulldelimiterspace} {{\text{HCO}}^{ - }_{{\text{3}}} }\) exchangers of rat thick limbs. Am J Physiol Renal Physiol 275:F334–F342

    CAS  Google Scholar 

  11. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl channel β-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 414:558–561

    Article  PubMed  CAS  Google Scholar 

  12. Fan H-T, Morishima S, Kida H, Okada Y (2001) Phloretin differentially inhibits volume-sensitive and cAMP-activated, but not Ca-activated, Cl channels. Br J Pharmacol 133:1096–1106

    Article  PubMed  CAS  Google Scholar 

  13. Friedrich T, Breiderhoff T, Jentsch TJ (1999) Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J Biol Chem 274:896–902

    Article  PubMed  CAS  Google Scholar 

  14. Goldman SA, Pulsinelli WA, Clarke WY, Kraig RP, Plum F (1989) The effects of extracellular acidosis on neurons and glia in vitro. J Cereb Blood Flow Metab 9:471–477

    PubMed  CAS  Google Scholar 

  15. Helbig H, Korbmacher C, Kuhner D, Berweck S, Wiederholt M (1988) Characterization of \({{\text{Cl}}^{ - } } \mathord{\left/ {\vphantom {{{\text{Cl}}^{ - } } {{\text{HCO}}^{ - }_{{\text{3}}} }}} \right. \kern-\nulldelimiterspace} {{\text{HCO}}^{ - }_{{\text{3}}} }\) exchange in cultured bovine pigmented ciliary epithelium. Exp Eye Res 47:515–523

    Article  PubMed  CAS  Google Scholar 

  16. Hélix N, Strobaek D, Dahl BH, Christophersen P (2003) Inhibition of the endogenous volume-regulated anion channel (VRAC) in HEK293 cells by acidic di-aryl-ureas. J Membr Biol 196:83–94

    Article  PubMed  Google Scholar 

  17. Iyer R, Iverson TM, Accardi A, Miller C (2002) A biological role for prokaryotic ClC chloride channels. Nature 419:715–718

    Article  PubMed  CAS  Google Scholar 

  18. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  19. Jordt SE, Jentsch TJ (1997) Molecular dissection of gating in the ClC-2 chloride channel. EMBO J 16:1582–1592

    Article  PubMed  CAS  Google Scholar 

  20. Kawasaki M, Fukuma T, Yamauchi K, Sakamoto H, Marumo F, Sasaki S (1999) Identification of an acid-activated Cl channel from human skeletal muscles. Am J Physiol Cell Physiol 277:C948–C954

    CAS  Google Scholar 

  21. Kim KH, Shcheynikov N, Wang Y, Muallem S (2005) SLC26A7 is a Cl channel regulated by intracellular pH. J Biol Chem 280:6463–6470

    Article  PubMed  CAS  Google Scholar 

  22. Lambert S, Oberwinkler J (2005) Characterization of a proton-activated, outwardly rectifying anion channel. J Physiol 567:191–213

    Article  PubMed  CAS  Google Scholar 

  23. Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46:281–309

    Article  PubMed  CAS  Google Scholar 

  24. Mo L, Hellmich HL, Fong P, Wood T, Embesi J, Wills NK (1999) Comparison of amphibian and human ClC-5: similarity of functional properties and inhibition by external pH. J Membr Biol 168:253–264

    Article  PubMed  CAS  Google Scholar 

  25. Mori S, Morishima S, Takasaki M, Okada Y (2002) Impaired activity of volume-sensitive anion channel during lactacidosis-induced swelling in neuronally differentiated NG108-15 cells. Brain Res 957:1–11

    Article  PubMed  CAS  Google Scholar 

  26. Nabekura T, Morishima S, Cover TL, Mori S, Kannan H, Komune S, Okada Y (2003) Recovery from lactacidosis-induced glial cell swelling with the aid of exogenous anion channels. Glia 41:247–259

    Article  PubMed  Google Scholar 

  27. Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA (1991) Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol Regul Integr Comp Physiol 260:R581–R588

    CAS  Google Scholar 

  28. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    Article  PubMed  CAS  Google Scholar 

  29. Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G (1997) Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 68:69–119

    Article  PubMed  CAS  Google Scholar 

  30. Nilius B, Oike M, Zahradnik I, Droogmans G (1994) Activation of a Cl current by hypotonic volume increase in human endothelial cells. J Gen Physiol 103:787–805

    Article  PubMed  CAS  Google Scholar 

  31. Nobles M, Higgins CF, Sardini A (2004) Extracellular acidification elicits a chloride current that shares characteristics with ICl(swell). Am J Physiol Cell Physiol 287:C1426–C1435

    Article  PubMed  CAS  Google Scholar 

  32. Oiki S, Kubo M, Okada Y (1994) Mg2+ and ATP-dependence of volume-sensitive Cl channels in human epithelial cells. Jpn J Physiol 44:S77–S79

    PubMed  CAS  Google Scholar 

  33. Okada Y (1997) Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am J Physiol Cell Physiol 273:C755–C789

    CAS  Google Scholar 

  34. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    Article  PubMed  CAS  Google Scholar 

  35. Okada Y, Maeno E, Shimizu T, Manabe K, Mori S, Nabekura T (2004) Dual roles of plasmalemmal chloride channels in induction of cell death. Pflügers Arch 448:287–295

    Article  PubMed  CAS  Google Scholar 

  36. Rehncrona S (1985) Brain acidosis. Ann Emerg Med 14:770–776

    Article  PubMed  CAS  Google Scholar 

  37. Sabirov RZ, Okada Y (2004) ATP-conducting maxi-anion channel: a new player in stress-sensory transduction. Jpn J Physiol 54:7–14

    Article  PubMed  CAS  Google Scholar 

  38. Sabirov RZ, Prenen J, Droogmans G, Nilius B (2000) Extra- and intracellular proton-binding sites of volume-regulated anion channels. J Membr Biol 177:13–22

    Article  PubMed  CAS  Google Scholar 

  39. Sauve R, Cai S, Garneau L, Klein H, Parent L (2000) pH and external Ca2+ regulation of a small conductance Cl channel in kidney distal tubule. Biochim Biophys Acta 1509:73–85

    Article  PubMed  CAS  Google Scholar 

  40. Shen MR, Wu SN, Chou CY (1996) Volume-sensitive chloride channels in the primary culture cells of human cervical carcinoma. Biochim Biophys Acta 1315:138–144

    PubMed  Google Scholar 

  41. Siesjo BK (1988) Acidosis and ischemic brain damage. Neurochem Pathol 9:31–88

    PubMed  CAS  Google Scholar 

  42. Siesjo BK (1993) Basic mechanisms of traumatic brain damage. Ann Emerg Med 22:959–969

    Article  PubMed  CAS  Google Scholar 

  43. Siesjo BK, Katsura K, Kristian T (1996) Acidosis-related damage. Adv Neurol 71:209–233

    PubMed  CAS  Google Scholar 

  44. Strange K, Emma F, Jackson PS (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol Cell Physiol 270:C711–C730

    CAS  Google Scholar 

  45. Tomlinson FH, Anderson RE, Meyer FB (1993) Brain pHi, cerebral blood flow, and NADH fluorescence during severe incomplete global ischemia in rabbits. Stroke 24:435–443

    PubMed  CAS  Google Scholar 

  46. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    Article  PubMed  CAS  Google Scholar 

  47. Xiong ZG, Chu XP, Simon RP (2006) Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol 209:59–68

    Article  PubMed  CAS  Google Scholar 

  48. Xu L, Glassford AJ, Giaccia AJ, Giffard RG (1998) Acidosis reduces neuronal apoptosis. Neuroreport 9:875–879

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto S, Ehara T (2006) Acidic extracellular pH-activated outwardly rectifying chloride current in mammalian cardiac myocytes. Am J Physiol Heart Circ Physiol 290:H1905–H1914

    Article  PubMed  CAS  Google Scholar 

  50. Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA 101:6752–6757

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank E.L. Lee for reading the manuscript, K. Shigemoto and M. Ohara for technical assistance, and T. Okayasu for secretarial assistance. This work was supported by Grants-in-Aid for Scientific Research from MEXT and JSPS and by funds from Japan China Medical Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunobu Okada.

Additional information

Hai-Yan Wang and Takahiro Shimizu equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HY., Shimizu, T., Numata, T. et al. Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells. Pflugers Arch - Eur J Physiol 454, 223–233 (2007). https://doi.org/10.1007/s00424-006-0193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0193-z

Keywords

Navigation