Skip to main content
Log in

Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Expressed by many cell types, acid-sensitive outwardly rectifying (ASOR) anion channels are known to be activated by extracellular acidification and involved in acidotoxic necrotic cell death. In contrast, ubiquitously expressed volume-sensitive outwardly rectifying (VSOR) anion channels are activated by osmotic cell swelling and involved in cell volume regulation and apoptotic cell death. Distinct inhibitors to distinguish ASOR from VSOR anion channels have not been identified. Although leucine-rich repeats containing 8A (LRRC8A) was recently found to be an essential component of VSOR anion channels, the possibility of an LRRC8 family member serving as a component of ASOR anion channels has not been examined. In this study, we explored the effects of 12 known VSOR channel inhibitors and small interfering RNA (siRNA)-mediated knockdown of LRRC8 family members on ASOR and VSOR currents in HeLa cells. Among these inhibitors, eight putative VSOR blockers, including 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), were totally ineffective at blocking ASOR channel activity, whereas suramin, R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy] acetic acid (DIOA), arachidonic acid, and niflumic acid were found to be effective ASOR anion channel antagonists. In addition, gene-silencing studies showed that no LRRC8 family members are essentially involved in ASOR anion channel activity, whereas LRRC8A is involved in VSOR anion channel activity in HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ackerman MJ, Wickman KD, Clapham DE (1994) Hypotonicity activates a native chloride current in xenopus-oocytes. J Gen Physiol 103:153–179. doi:10.1085/jgp.103.2.153

    Article  CAS  PubMed  Google Scholar 

  2. Akita T, Okada Y (2014) Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 275:211–231. doi:10.1016/j.neuroscience.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  3. Auzanneau C, Thoreau V, Kitzis A, Becq F (2003) A novel voltage-dependent chloride current activated by extracellular acidic pH in cultured rat Sertoli cells. J Biol Chem 278:19230–19236. doi:10.1074/jbc.M301096200

    Article  CAS  PubMed  Google Scholar 

  4. Benfenati V, Caprini M, Nicchia GP, Rossi A, Dovizio M, Cervetto C, Nobile M, Ferroni S (2009) Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia. Channels (Austin) 3:323–336. doi:10.4161/chan.3.5.9568

    Article  CAS  Google Scholar 

  5. Brauer M, Frei E, Claes L, Grissmer S, Jager H (2003) Influence of K-Cl cotransporter activity on activation of volume-sensitive Cl channels in human osteoblasts. Am J Physiol Cell Physiol 285:C22–C30. doi:10.1152/ajpcell.00289.2002

    Article  PubMed  Google Scholar 

  6. Capurro V, Gianotti A, Caci E, Ravazzolo R, Galietta LJV, Zegarra-Moran O (2015) Functional analysis of acid-activated Cl channels: properties and mechanisms of regulation. Biochim Biophys Acta Biomembr 1848:105–114. doi:10.1016/j.bbamem.2014.10.008

    Article  CAS  Google Scholar 

  7. Chan HC, Goldstein J, Nelson DJ (1992) Alternate pathways for chloride conductance activation in normal and cystic fibrosis airway epithelial cells. Am J Physiol Cell Physiol 262(5 Pt 1):C1273–83

    CAS  Google Scholar 

  8. Chaves LAP, Varanda WA (2008) Volume-activated chloride channels in mice Leydig cells. Pflugers Arch 457:493–504. doi:10.1007/s00424-008-0525-2

    Article  Google Scholar 

  9. Decher T, Lang TJ, Nilius B, Bruggemann A, Busch TE, Steinmeyer K (2001) DCPIB is a novel selective blocker of ICl, swell and prevents swelling-induced shortening of guinea-pig atrial action potential duration. Br J Pharmacol 134:1467–1479. doi:10.1038/sj.bjp.0704413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Droogmans G, Maertens C, Prenen J, Nilius B (1999) Sulphonic acid derivatives as probes of pore properties of volume-regulated anion channels in endothelial cells. Br J Pharmacol 128:35–40. doi:10.1038/sj.bjp.0702770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ducharme G, Newell EW, Pinto C, Schlichter LC (2007) Small-conductance Cl channels contribute to volume regulation and phagocytosis in microglia. Eur J Neurosci 26:2119–2130. doi:10.1111/j.1460-9568.2007.05802.x

    Article  PubMed  Google Scholar 

  12. Fan HT, Morishima S, Kida H, Okada Y (2001) Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl channels. Br J Pharmacol 133:1096–1106. doi:10.1038/sj.bjp.0704159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galietta LJV, Falzoni S, DiVirgilio F, Romeo G, ZegarraMoran O (1997) Characterization of volume-sensitive taurine- and Cl-permeable channels. Am J Physiol Cell Physiol 273:C57–C66

    CAS  Google Scholar 

  14. Harl B, Schmoelzer J, Jakab M, Ritter M, Kerschbaum HH (2013) Chloride channel blockers suppress formation of engulfment pseudopodia in microglial cells. Cell Physiol Biochem 31:319–337. doi:10.1159/000343370

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277. doi:10.1152/physrev.00037.2007

    Article  CAS  PubMed  Google Scholar 

  16. Jackson PS, Strange K (1995) Characterization of the voltage-dependent properties of a volume-sensitive anion conductance. J Gen Physiol vol 105, 1995/05/01 edn

  17. Jiao JD, Xu CQ, Yue P, Dong DL, Li Z, Du ZM, Yang BF (2006) Volume-sensitive outwardly rectifying chloride channels are involved in oxidative stress-induced apoptosis of mesangial cells. Biochem Biophys Res Commun 340:277–285. doi:10.1016/j.bbrc.2005.11.175

    Article  CAS  PubMed  Google Scholar 

  18. Kajiya H, Okamoto F, Ohgi K, Nakao A, Fukushima H, Okabe K (2009) Characteristics of ClC7 Cl channels and their inhibition in mutant (G215R) associated with autosomal dominant osteopetrosis type II in native osteoclasts and hClcn7 gene-expressing cells. Pflugers Arch 458:1049–1059. doi:10.1007/s00424-009-0689-4

    Article  CAS  PubMed  Google Scholar 

  19. Kubo M, Okada Y (1992) Volume-regulatory Cl channel currents in cultured human epithelial cells. J Physiol 456:351–371. doi:10.1113/jphysiol.1992.sp019340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurbannazarova RS, Bessonova SV, Okada Y, Sabirov RZ (2011) Swelling-activated anion channels are essential for volume regulation of mouse thymocytes. Int J Mol Sci 12:9125–9137. doi:10.3390/ijms12129125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lambert S, Oberwinkler J (2005) Characterization of a proton-activated, outwardly rectifying anion channel. J Physiol 567:191–213. doi:10.1113/jphysiol.2005.089888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maertens C, Wei L, Droogmans G, Nilius B (2000) Inhibition of volume-regulated and calcium-activated chloride channels by the antimalarial mefloquine. J Pharmacol Exp Ther vol 295, 2000/09/19 edn

  23. Matsuda JJ, Filali MS, Collins MM, Volk KA, Lamb FS (2010) The ClC-3 Cl/H+ antiporter becomes uncoupled at low extracellular pH. J Biol Chem 285:2569–2579. doi:10.1074/jbc.M109.018002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G (1997) Properties of volume-regulated anion channels in mammalian cells. Prog Biophy s Mol Biol 68:69–119. doi:10.1016/S0079-6107(97)00021-7

    Article  CAS  Google Scholar 

  25. Nobles M, Higgins CF, Sardini A (2004) Extracellular acidification elicits a chloride current that shares characteristics with ICl(swell). Am J Physiol Cell Physiol 287:C1426–C1435. doi:10.1152/ajpcell.00549.2002

    Article  CAS  PubMed  Google Scholar 

  26. Ohgi K, Okamoto F, Kajiya H, Sakagami R, Okabe K (2011) Antibodies against ClC7 inhibit extracellular acidification-induced Cl currents and bone resorption activity in mouse osteoclasts. Naunyn-Schmiedeberg’s Arch Pharmacol 383:79–90. doi:10.1007/s00210-010-0576-8

    Article  CAS  Google Scholar 

  27. Okada T, Akita T, Sato-Numata K, Islam MR, Okada Y (2014) A newly cloned ClC-3 isoform, ClC-3d, as well as ClC-3a mediates Cd2+-sensitive outwardly rectifying anion currents. Cell Physiol Biochem 33:539–556. doi:10.1159/000358633

    Article  CAS  PubMed  Google Scholar 

  28. Okada Y (1997) Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am J Physiol Cell Physiol 273(3 Pt 1):C755–89

    CAS  Google Scholar 

  29. Okada Y (2006) Cell volume-sensitive chloride channels: phenotypic properties and molecular identity. Contrib Nephrol 152:9–24. doi:10.1159/000096285

    Article  CAS  PubMed  Google Scholar 

  30. Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587:2141–2149. doi:10.1113/jphysiol.2008.165076

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Okada Y, Sato K, Toychiev AH, Suzuki M, Dutta AK, Inoue H, Sabirov RZ (2009) The puzzles of volume-activated anion channels. In: Alvarez-Leefmans FJ, Delpire E (eds) Physiology and pathology of chloride transporters and channels in the nervous system. Elsevier, San Diego, pp 283–306

    Google Scholar 

  32. Pedersen SF, Klausen TK, Nilius B (2015) The identification of a volume-regulated anion channel: an amazing Odyssey. Acta Physiol 213:868–881. doi:10.1111/apha.12450

    Article  CAS  Google Scholar 

  33. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458. doi:10.1016/j.cell.2014.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robson L, Hunter M (1994) Role of cell-volume and protein kinase C in regulation of a Cl conductance in single proximal tubule cells of Rana-Temporaria. J Physiol 480(Pt 1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sabirov RZ, Okada Y (2004) Wide nanoscopic pore of maxi-anion channel suits its function as an ATP-conductive pathway. Biophys J 87:1672–1685. doi:10.1529/biophysj.104.043174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic Signal 1:311–328. doi:10.1007/s11302-005-1557-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sato-Numata K, Numata T, Okada T, Okada Y (2013) Acid-sensitive outwardly rectifying (ASOR) anion channels in human epithelial cells are highly sensitive to temperature and independent of ClC-3. Pflugers Arch 465:1535–1543. doi:10.1007/s00424-013-1296-y

    Article  CAS  PubMed  Google Scholar 

  38. Sato-Numata K, Numata T, Okada Y (2014) Temperature sensitivity of acid-sensitive outwardly rectifying (ASOR) anion channels in cortical neurons is involved in hypothermic neuroprotection against acidotoxic necrosis. Channels (Austin) 8:278–283. doi:10.4161/chan.27748

    Article  Google Scholar 

  39. Sato K, Numata T, Lee E, Okada Y (2012) Exploration of the molecular identity of acid-sensitive outwardly rectifying Cl channel (ASOR). J Physiol Sci 62(Supplement 1):S50

    Google Scholar 

  40. Ternovsky VI, Okada Y, Sabirov RZ (2004) Sizing the pore of the volume-sensitive anion channel by differential polymer partitioning. FEBS Lett 576:433–436. doi:10.1529/biophysj.104.043174

    Article  CAS  PubMed  Google Scholar 

  41. Tseng GN (1992) Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. Am J Physiol Cell Physiol 262(4 Pt 1):C1056–68

    CAS  Google Scholar 

  42. Tsumura T, Oiki S, Ueda S, Okuma M, Okada Y (1996) Sensitivity of volume-sensitive Cl conductance in human epithelial cells to extracellular nucleotides. Am J Physiol Cell Physiol vol 271, 1996/12/01 edn

  43. Voss FK, Ullrich F, Muench J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638. doi:10.1126/science.1252826

    Article  CAS  PubMed  Google Scholar 

  44. Wang HY, Shimizu T, Numata T, Okada Y (2007) Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells. Pflugers Arch 454:223–233. doi:10.1007/s00424-006-0193-z

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Ma W, Zhu L, Ye D, Li Y, Liu S, Li H, Zuo W, Li B, Ye W, Chen L (2012) ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol 303:C14–C23. doi:10.1152/ajpcell.00145.2011

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto S, Ehara T (2006) Acidic extracellular pH-activated outwardly rectifying chloride current in mammalian cardiac myocytes. Am J Physiol Heart Circ Physiol 290:H1905–H1914. doi:10.1152/ajpheart.00965.2005

    Article  CAS  PubMed  Google Scholar 

  47. Yantorno RE, Carre DA, Coca-Prados M, Krupin T, Civan MM (1992) Whole cell patch clamping of ciliary epithelial cells during anisosmotic swelling. Am J Physiol Cell Physiol 262(2 Pt 1):C501–9

    CAS  Google Scholar 

  48. Ye ZC, Oberheim N, Kettenmann H, Ransom BR (2009) Pharmacological “cross-inhibition” of connexin hemichannels and swelling activated anion channels. Glia 57:258–269. doi:10.1002/glia.20754

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang JJ, Jacob TJ, Valverde MA, Hardy SP, Mintenig GM, Sepúlveda FVFV, Gill DR, Hyde SC, Trezise AE, Higgins CF (1994) Tamoxifen blocks chloride channels. A possible mechanism for cataract formation. J Clin Invest 94:1690–1697. doi:10.1172/JCI117514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang JP, Lieberman M (1996) Chloride conductance is activated by membrane distention of cultured chick heart cells. Cardiovasc Res 32:168–179. doi:10.1016/s0008-6363(95)00132-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the JSPS KAKENHI grants in-aid (Numbers 25670112 and 15K15028 to Y.O. and Number 26860153 to K.S.-N.). The authors thank R. Z. Sabirov for discussion as well as K. Shigemoto and N. Yasui for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunobu Okada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato-Numata, K., Numata, T., Inoue, R. et al. Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel. Pflugers Arch - Eur J Physiol 468, 795–803 (2016). https://doi.org/10.1007/s00424-015-1786-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1786-1

Keywords

Navigation