Skip to main content
Log in

Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

K+ and Cl homeostasis have been implicated in cell volume regulation and apoptosis. We addressed the hypothesis that K+ and Cl efflux may contribute to apoptotic cell shrinkage and apoptotic death in cultured cortical neurons. CLC-2 and CLC-3 chloride channels were detected in cultured cortical neurons. The Cl channel blockers 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) inhibited the outwardly rectifying Cl current, prevented apoptotic cell shrinkage, and mildly attenuated cell death induced by staurosporine, C2-ceramide, or serum deprivation. Cl channel blockers, however, at concentrations that prevented cell shrinkage had no significant effects on caspase activation and/or DNA fragmentation. Cell death in the presence of a Cl channel blocker was still sensitive to blockade by the caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethyl ketone (z-VAD-fmk). Electron microscopy revealed that, although DIDS prevented apoptotic cell shrinkage, certain apoptotic ultrastructural alterations still took place in injured neurons. On the other hand, the K+ channel blocker tetraethylammonium (TEA), clofilium, or the caspase inhibitor z-VAD-fmk prevented cell shrinkage as well as caspase activation and/or DNA damage, and showed stronger neuroprotection against apoptotic alterations and cell death. The results indicate that neurons may undergo apoptotic process without cell shrinkage and imply distinct roles for Cl and K+ homeostasis in regulating different apoptotic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F
Fig. 2A, B
Fig. 3A, B
Fig. 4A, B
Fig. 5A, B
Fig. 6A–C
Fig. 7A–E

Similar content being viewed by others

References

  • Armstrong RC, Aja TJ, Hoang KD, Gaur S, Bai X, Alnemri ES, Litwack G, Karanewsky DS, Fritz LC, Tomaselli KJ (1997) Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis. J Neurosci 17:553–562

    CAS  PubMed  Google Scholar 

  • Ballanyi K, Grafe P (1985) An intracellular analysis of gamma-aminobutyric-acid-associated ion movements in rat sympathetic neurones. J Physiol (Lond) 365:41–58

    Google Scholar 

  • Banasiak KJ, Xia Y, Haddad GG (2000) Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol 62:215–249

    Article  PubMed  Google Scholar 

  • Barinaga M (1998) Death by dozens of cuts. Science 280:32–34

    Article  CAS  PubMed  Google Scholar 

  • Bomsztyk K, Calalb MB, Smith L, Stanton TH (1988) A microelectrometric titration method for measurement of total intracellular Cl concentration. Am J Physiol 254:C200–C205

    CAS  PubMed  Google Scholar 

  • Bortner CD, Cidlowski JA (1996) Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Physiol 271:C950–C961

    CAS  PubMed  Google Scholar 

  • Bortner CD, Cidlowski JA (2002) Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ 9:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Britton FC, Hatton WJ, Rossow CF, Duan D, Hume JR, Horowitz B (2000) Molecular distribution of volume-regulated chloride channels (ClC-2 and ClC-3) in cardiac tissues. Am J Physiol 279:H2225–H2233

    CAS  Google Scholar 

  • Churchwell KB, Wright SH, Emma F, Rosenberg PA, Strange K (1996) NMDA receptor activation inhibits neuronal volume regulation after swelling induced by veratridine-stimulated Na+ influx in rat cortical cultures. J Neurosci 16:7447–7457

    PubMed  Google Scholar 

  • Coca-Prados M, Anguita J, Chalfant ML, Civan MM (1995) PKC-sensitive Cl channels associated with ciliary epithelial homologue of pICln. Am J Physiol 268:C572–C579

    CAS  PubMed  Google Scholar 

  • Dallaporta B, Hirsch T, Susin SA, Zamzami N, Larochette N, Brenner C, Marzo I, Kroemer G (1998) Potassium leakage during the apoptotic degradation phase. J Immunol 160:5605–5615

    CAS  PubMed  Google Scholar 

  • Dallwig R, Deitmer JW, Backus KH (1999) On the mechanism of GABA-induced currents in cultured rat cortical neurons. Pflugers Arch 437:289–297

    CAS  PubMed  Google Scholar 

  • Devuyst O, Guggino WB (2002) Chloride channels in the kidney: lessons learned from knockout animals. Am J Physiol 283:F1176–F1191

    CAS  PubMed  Google Scholar 

  • Dezaki K, Maeno E, Okada Y (2000) Fluorescence measurements of intracellular Cl concentration during cell apoptosis (abstract). Jpn J Physiol 50:S37

    Google Scholar 

  • Dick GM, Kong ID, Sanders KM (1999) Effects of anion channel antagonists in canine colonic myocytes: comparative pharmacology of Cl, Ca2+, and K+ currents. Br J Pharmacol 127:1819–1831

    CAS  PubMed  Google Scholar 

  • Dietrich J, Lindau M (1994) Chloride channels in mast cells: block by DIDS and role in exocytosis. J Gen Physiol 104:1099–1111

    CAS  PubMed  Google Scholar 

  • Doughty JM, Miller Al, Langton PD (1998) Non-specificity of chloride channel blockers in rat cerebral arteries: block of the L-type calcium channel. J Physiol (Lond) 507:433–439

  • Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997) Molecular identification of a volume-regulated chloride channel. Nature 390:417–421

    CAS  PubMed  Google Scholar 

  • Galvan M, Dorge A, Beck F, Rick R (1984) Intracellular electrolyte concentrations in rat sympathetic neurones measured with an electron microprobe. Pflugers Arch 400:274–279

    CAS  PubMed  Google Scholar 

  • Garcia L, Rigoulet M, Georgescauld D, Dufy B, Sartor P (1997) Regulation of intracellular chloride concentration in rat lactotrophs: possible role of mitochondria. FEBS Lett 400:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gosling M, Smith JW, Poyner DR (1995) Characterization of a volume-sensitive chloride current in rat osteoblast-like (ROS 17/2.8) cells. J Physiol (Lond) 485:671–682

    Google Scholar 

  • Hille B (1992) Introduction. In: Hille B (ed) Ionic channels of excitable membranes. Sinauer, Sunderland, pp 1–20

  • Huang P, Liu J, Di A, Robinson NC, Musch MW, Kaetzel MA, Nelson DJ (2001) Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem 276:20093–20100

    Article  CAS  PubMed  Google Scholar 

  • Hughes FM Jr, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39:157–171

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Hara M, Zeng XT, Hirose T, Ohnishi S, Yasukura T, Uriu T, Omori K, Minato A, Inagaki C (1991) An ATP-driven Cl pump regulates Cl concentrations in rat hippocampal neurons. Neurosci Lett 134:75–78

    Article  CAS  PubMed  Google Scholar 

  • Itakura A, Tanaka A, Aioi A, Tonogaito H, Matsuda H (2002) Ceramide and sphingosine rapidly induce apoptosis of murine mast cells supported by interleukin-3 and stem cell factor. Exp Hematol 30:272–278

    Article  CAS  PubMed  Google Scholar 

  • Jackson PS, Madsen JR (1997) Cerebral edema, cell volume regulation, and the role of ion channels in organic osmolyte transport. Pediatr Neurosurg 27:279–285

    CAS  PubMed  Google Scholar 

  • Jentsch TJ, Friedrich T, Schriever A, Yamada H (1999) The CLC chloride channel family. Pflugers Arch 437:783–795

    Article  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  Google Scholar 

  • Koh JY, Wie MB, Gwag BJ, Sensi SL, Canzoniero LM, Demaro J, Csernansky C, Choi DW (1995) Staurosporine-induced neuronal apoptosis. Exp Neurol 135:153–159

    Article  CAS  PubMed  Google Scholar 

  • Krick S, Platoshyn O, Sweeney M, McDaniel SS, Zhang S, Rubin LJ, Yuan JX (2002) Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am J Physiol 282:H184–H193

    CAS  Google Scholar 

  • Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287

    CAS  PubMed  Google Scholar 

  • Lang F, Lang KS, Wieder T, Myssina S, Birka C, Lang PA, Kaiser S, Kempe D, Duranton C, Huber SM (2003) Cation channels, cell volume and the death of an erythrocyte. Pflugers Arch 447:121–125

    Article  CAS  PubMed  Google Scholar 

  • Le Foll F, Castel H, Soriani O, Vaudry H, Cazin L (1998) Gramicidin-perforated patch revealed depolarizing effect of GABA in cultured frog melanotrophs. J Physiol (Lond) 507:55–69

    Google Scholar 

  • Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    PubMed  Google Scholar 

  • McLaughlin B, Pal S, Tran MP, Parsons AA, Barone FC, Erhardt JA, Aizenman E (2001) p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci. 21:3303–3311

    Google Scholar 

  • Meng XJ, Carruth MW, Weinman SA (1997) Leukotriene D4 activates a chloride conductance in hepatocytes from lipopolysaccharide-treated rats. J Clin Invest 99:2915–2922

    CAS  PubMed  Google Scholar 

  • Montague JW, Bortner CD, Hughes FM Jr, Cidlowski JA (1999) A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids 64:563–569

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Kukita F (2000) Intracellular [Cl] modulates synchronous electrical activity in rat neocortical neurons in culture by way of GABAergic inputs. Brain Res 863:192–204

    Article  CAS  PubMed  Google Scholar 

  • Nietsch HH, Roe MW, Fiekers JF, Moore AL, Lidofsky SD (2000) Activation of potassium and chloride channels by tumor necrosis factor alpha. Role in liver cell death. J Biol Chem 275:20556–20561

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Sehrer J, De Smet P, Van Driessche W, Droogmans G (1995) Volume regulation in a toad epithelial cell line: role of coactivation of K+ and Cl channels. J Physiol (Lond) 487:367–378

    Google Scholar 

  • Olsen ML, Schade S, Lyons SA, Amaral MD, Sontheimer H (2003) Expression of voltage-gated chloride channels in human glioma cells. J Neurosci 23:5572–5582

    CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Franco R, Torres-Marquez ME, Hernandez-Fonseca K, Ortega A (2000) Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell Physiol Biochem 10:361–370

    PubMed  Google Scholar 

  • Pilas B, Durack G (1997) A flow cytometric method for measurement of intracellular chloride concentration in lymphocytes using the halide-specific probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ). Cytometry 28:316–322

    Article  CAS  PubMed  Google Scholar 

  • Rapallino MV, Cupello A, Hyden H (1990) Stimulation of 36Cl permeation in the in-out direction across the Dieters’ neuron membrane by GABA on its cytoplasmic side: effect of different ionic conditions. Int J Neurosci 53:135–141

    CAS  PubMed  Google Scholar 

  • Rasola A, Farahi Far D, Hofman P, Rossi B (1999) Lack of internucleosomal DNA fragmentation is related to Cl efflux impairment in hematopoietic cell apoptosis. FASEB J 13:1711–1723

    CAS  PubMed  Google Scholar 

  • Reinsprecht M, Rohn MH, Spadinger RJ, Pecht I, Schindler H, Romanin C (1995) Blockade of capacitive Ca2+ influx by Cl channel blockers inhibits secretion from rat mucosal-type mast cells. Mol Pharmacol 47:1014–1020

    CAS  PubMed  Google Scholar 

  • Rose K, Goldberg MP, Choi DW (1993) Cytotoxicity in murine cortical cell culture. In: Tyson CA, Frazier JM (eds) Method in Toxicology. Academic Press, San Diego, pp 46–60

  • Sacchi O, Rossi ML, Canella R, Fesce R (1999) Participation of a chloride conductance in the subthreshold behavior of the rat sympathetic neuron. J Neurophysiol 82:1662–1675

    CAS  PubMed  Google Scholar 

  • Schwiebert EM, Flotte T, Cutting GR, Guggino WB (1994) Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am J Physiol. 266:C1464–C1477

    Google Scholar 

  • Sik A, Smith RL, Freund TF (2000) Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neurosci 101:51–65

    Article  CAS  Google Scholar 

  • Souktani R, Berdeaux A, Ghaleh B, Giudicelli JF, Guize L, Le Heuzey JY, Henry P (2000) Induction of apoptosis using sphingolipids activates a chloride current in Xenopus laevis oocytes. Am J Physiol 279:C158–C165

    CAS  Google Scholar 

  • Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bosl MR, Ruether K, Jahn H, Jentsch TJ (2001) disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–196

    CAS  PubMed  Google Scholar 

  • Szabo I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F (1998) Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci USA 95:6169–6174

    CAS  PubMed  Google Scholar 

  • Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911

    CAS  PubMed  Google Scholar 

  • Weikersthal SF von, Barrand MA, Hladky SB (1999) Functional and molecular characterization of a volume-sensitive chloride current in rat brain endothelial cells. J Physiol (Lond) 516:75–84

    Google Scholar 

  • Weylandt KH, Valverde MA, Nobles M, Raguz S, Amey JS, Diaz M, Nastrucci C, Higgins CF, Sardini A (2001) Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation. J Biol Chem 276:17461–17467

    Article  CAS  PubMed  Google Scholar 

  • Wible BA, Wang L, Kuryshev YA, Basu A, Haldar S, Brown AM (2002) Increased K+ efflux and apoptosis induced by the potassium channel modulatory protein KChAP/PIAS3beta in prostate cancer cells. J Biol Chem 277:17852–17862

    Article  CAS  PubMed  Google Scholar 

  • Xiao AY, Wei L, Xia S, Rothman S, Yu SP (2002a) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350–1362

    CAS  PubMed  Google Scholar 

  • Xiao AY, Wang XQ, Yang A, Yu SP (2002b) Slight impairment of Na+,K+-ATPase synergistically aggravates ceramide- and beta-amyloid-induced apoptosis in cortical neurons. Brain Res 955:253–259

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Lu L (1994) Protein kinase A-regulated Cl channel in ML-1 human hematopoietic myeloblasts. J Membr Biol 142:65–75

    CAS  PubMed  Google Scholar 

  • Yagyu K, Kitagawa K, Irie T, Hattori N, Omori K, Inagaki C (1999) Lithium decreases Cl-ATPase activity and increases intracellular Cl concentration in cultured rat hippocampal neurons. Brain Res 821:530–534

    Article  CAS  PubMed  Google Scholar 

  • Yang AZ, Xiao AY, Yu SP (2001) Effects of chloride channel blockers on neuronal apoptosis (abstract). Soc Neurosci Abstr 27:972.7

    Google Scholar 

  • Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386

    Article  CAS  PubMed  Google Scholar 

  • Yu SP, Choi DW (2000) Ions, cell volume, and apoptosis. Proc Natl Acad Sci USA 97:9360–9362

    CAS  PubMed  Google Scholar 

  • Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    CAS  PubMed  Google Scholar 

  • Yu SP, Yeh CH, Gottron F, Wang X, Grabb MC, Choi DW (1999) Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J Neurochem 73:933–941

    Article  CAS  PubMed  Google Scholar 

  • Yu SP, Canzoniero LM, Choi DW (2001) Ion homeostasis and apoptosis. Curr Opin Cell Biol 13:405–411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institute of Health (NS42236, NS45155) and American Heart Association-Bugher Foundation (0170063N, 0170064N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Ping Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, L., Xiao, A.Y., Jin, C. et al. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch - Eur J Physiol 448, 325–334 (2004). https://doi.org/10.1007/s00424-004-1277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1277-2

Keywords

Navigation