Skip to main content
Log in

Cation channels, cell volume and the death of an erythrocyte

  • Frontiers in Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Similar to a variety of nucleated cells, human erythrocytes activate a non-selective cation channel upon osmotic cell shrinkage. Further stimuli of channel activation include oxidative stress, energy depletion and extracellular removal of Cl. The channel is permeable to Ca2+ and opening of the channel increases cytosolic [Ca2+]. Intriguing evidence points to a role of this channel in the elimination of erythrocytes by apoptosis. Ca2+ entering through the cation channel stimulates a scramblase, leading to breakdown of cell membrane phosphatidylserine asymmetry, and stimulates Ca2+-sensitive K+ channels, thus leading to KCl loss and (further) cell shrinkage. The breakdown of phosphatidylserine asymmetry is evidenced by annexin binding, a typical feature of apoptotic cells. The effects of osmotic shock, oxidative stress and energy depletion on annexin binding are mimicked by the Ca2+ ionophore ionomycin (1 µM) and blunted in the nominal absence of extracellular Ca2+. Nevertheless, the residual annexin binding points to additional mechanisms involved in the triggering of the scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Susceptibility to annexin binding is enhanced in several genetic disorders affecting erythrocyte function, such as thalassaemia, sickle-cell disease and glucose-6-phosphate dehydrogenase deficiency. The enhanced vulnerability presumably contributes to the shortened life span of the affected erythrocytes. Beyond their role in the limitation of erythrocyte survival, cation channels may contribute to the triggering of apoptosis in nucleated cells exposed to osmotic shock and/or oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.

Similar content being viewed by others

References

  1. Aiken NR, Satterlee JD, Galey WR (1992) Measurement of intracellular Ca2+ in young and old human erythrocytes using 19F-NMR spectroscopy. Biochim Biophys Acta 1136:155–160

    Article  CAS  PubMed  Google Scholar 

  2. Allan D, Raval PJ (1987) The role of Ca2+-dependent biochemical changes in the ageing process in normal red cells and in the development of irreversibly sickled cells. Folia Haematol Int Mag Klin Morphol Blutforsch 114:499–503

    CAS  PubMed  Google Scholar 

  3. Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, Schulze-Osthoff K, Wesselborg S (2001) Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ 8:1197–1206

    Article  PubMed  Google Scholar 

  4. Bernhardt I, Hall AC, Ellory JC (1991) Effects of low ionic strength media on passive human red cell monovalent cation transport. J Physiol (Lond) 434:489–506

    Google Scholar 

  5. Bilmen S, Aksu TA, Gumuslu S, Korgun DK, Canatan D (2001) Antioxidant capacity of G-6-PD-deficient erythrocytes. Clin Chim Acta 303:83–86

    Article  CAS  PubMed  Google Scholar 

  6. Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA 95:3077–3081

    Article  CAS  PubMed  Google Scholar 

  7. Bortner CD, Cidlowski JA (1998) A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol 56:1549–1559

    PubMed  Google Scholar 

  8. Bortner CD, Cidlowski JA (1999) Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953–1962

    CAS  PubMed  Google Scholar 

  9. Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, Slomianny C, Sartiaux C, Alonso C, Huart JJ, Montreuil J, Ameisen JC (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8:1143–1156

    Article  PubMed  Google Scholar 

  10. Cabado AG, Vieytes MR, Botana LM (1994) Effect of ion composition on the changes in membrane potential induced with several stimuli in rat mast cells. J Cell Physiol 158:309–316

    PubMed  Google Scholar 

  11. Cameron IL, Hardman WE, Smith NK, Fullerton GD, Miseta A (1993) Changes in the concentration of ions during senescence of the human erythrocyte. Cell Biol Int 17:93–98

    Article  CAS  PubMed  Google Scholar 

  12. Chan HC, Goldstein J, Nelson DJ (1992) Alternate pathways for chloride conductance activation in normal and cystic fibrosis airway epithelial cells. Am J Physiol 262:C1273–1283

    CAS  PubMed  Google Scholar 

  13. Cheng K, Haspel HC, Vallano ML, Osotimehin B, Sonenberg M (1980) Measurement of membrane potentials (psi) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation. J Membr Biol 56:191–201

    CAS  PubMed  Google Scholar 

  14. Culliford SJ, Bernhardt I, Ellory JC (1995) Activation of a novel organic solute transporter in mammalian red blood cells. J Physiol (Lond) 489:755–765

    Google Scholar 

  15. Daugas E, Cande C, Kroemer G (2001) Erythrocytes: death of a mummy. Cell Death Differ 8:1131–1133

    Article  PubMed  Google Scholar 

  16. Deal JE, Shah V, Goodenough G, Dillon MJ (1990) Red cell membrane sodium transport: possible genetic role and use in identifying patients at risk of essential hypertension. Arch Dis Child 65:1154–1157

    CAS  PubMed  Google Scholar 

  17. Del Carlo B, Pellegrini M, Pellegrino M (2002) Calmodulin antagonists do not inhibit IK(Ca) channels of human erythrocytes. Biochim Biophys Acta 1558:133–141

    PubMed  Google Scholar 

  18. Deutsch CJ, Holian A, Holian SK, Daniele RP, Wilson DF (1979) Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes. J Cell Physiol 99:79–93

    CAS  PubMed  Google Scholar 

  19. Dinudom A, Komwatana P, Young JA, Cook DI (1995) Control of the amiloride-sensitive Na+ current in mouse salivary ducts by intracellular anions is mediated by a G protein. J Physiol (Lond) 487:549–555

    Google Scholar 

  20. Dunn PM (1998) The action of blocking agents applied to the inner face of Ca2+-activated K+ channels from human erythrocytes. J Membr Biol 165:133–143

    Article  CAS  PubMed  Google Scholar 

  21. Duranton C, Huber SM, Lang F (2002) Oxidation induces a Cl(-)-dependent cation conductance in human red blood cells. J Physiol (Lond) 539:847–855

    Google Scholar 

  22. Eda S, Sherman IW (2002) Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol Biochem 12:373–384

    PubMed  Google Scholar 

  23. Fillon S, Lang F, Jendrossek V (2002) Pseudomonas aeruginosa triggered apoptosis of human epithelial cells depends on the temperature during infection. Cell Physiol Biochem 12:207–214

    Article  CAS  PubMed  Google Scholar 

  24. Gamper N, Huber SM, Badawi K, Lang F (2000) Cell volume-sensitive sodium channels upregulated by glucocorticoids in U937 macrophages. Pflugers Arch 441:281–286

    Article  CAS  PubMed  Google Scholar 

  25. Gardos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30:653–654

    Article  CAS  Google Scholar 

  26. Girardin E, Paunier L (1985) Relationship between magnesium, potassium and sodium concentrations in lymphocytes and erythrocytes from normal subjects. Magnesium 4:188–192

    CAS  PubMed  Google Scholar 

  27. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    CAS  PubMed  Google Scholar 

  28. Grygorczyk R, Schwarz W (1983) Properties of the Ca2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique. Cell Calcium 4:499–510

    CAS  PubMed  Google Scholar 

  29. Gulbins E, Szabo I, Baltzer K, Lang F (1997) Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci USA 94:7661–7666

    CAS  PubMed  Google Scholar 

  30. Gulbins E, Jekle A, Ferlinz K, Grassme H, Lang F (2000) Physiology of apoptosis. Am J Physiol 279:F605–F615

    PubMed  Google Scholar 

  31. Hoffman JF, Joiner W, Nehrke K, Potapova O, Foye K, Wickrema A (2003) The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. Proc Natl Acad Sci USA 100:7366–7371

    Article  CAS  PubMed  Google Scholar 

  32. Huber SM, Gamper N, Lang F (2001) Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pflugers Arch 441:551–558

    Article  CAS  PubMed  Google Scholar 

  33. Ibe W, Bartels W, Lindemann S, Grosser T, Buerke M, Boissel JP, Meyer J, Darius H (2001) Involvement of PKC and NF-kappaB in nitric oxide induced apoptosis in human coronary artery smooth muscle cells. Cell Physiol Biochem 11:231–240

    Article  CAS  PubMed  Google Scholar 

  34. Imanishi H, Nakai T, Abe T, Takino T (1985) Glutathione metabolism in red cell aging. Mech Ageing Dev 32:57–62

    Article  CAS  PubMed  Google Scholar 

  35. Joiner CH, Lauf PK (1978) Ouabain binding and potassium transport in young and old populations of human red cells. Membr Biochem 1:187–202

    CAS  PubMed  Google Scholar 

  36. Jones GS, Knauf PA (1985) Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. J Gen Physiol 86:721–738

    CAS  PubMed  Google Scholar 

  37. Kaji DM, Thakkar U, Kahn T (1981) Glucocorticoid-induced alterations in the sodium potassium pump of the human erythrocyte. J Clin Invest 68:422–430

    CAS  PubMed  Google Scholar 

  38. Kean LS, Brown LE, Nichols JW, Mohandas N, Archer DR, Hsu LL (2002) Comparison of mechanisms of anemia in mice with sickle cell disease and beta-thalassemia: peripheral destruction, ineffective erythropoiesis, and phospholipid scramblase-mediated phosphatidylserine exposure. Exp Hematol 30:394–402

    Article  CAS  PubMed  Google Scholar 

  39. Koch J, Korbmacher C (1999) Osmotic shrinkage activates nonselective cation (NSC) channels in various cell types. J Membr Biol 168:131–139

    CAS  PubMed  Google Scholar 

  40. Korff JM, Siebens AW, Gill JR Jr (1984) Correction of hypokalemia corrects the abnormalities in erythrocyte sodium transport in Bartter's syndrome. J Clin Invest 74:1724–1729

    CAS  PubMed  Google Scholar 

  41. Kramer JJ, Swislocki NI (1985) The effects of pentoxifylline on rat erythrocytes of different age. Mech Ageing Dev 32:283–298

    Article  CAS  PubMed  Google Scholar 

  42. Kulms D, Poppelmann B, Yarosh D, Luger TA, Krutmann J, Schwarz T (1999) Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc Natl Acad Sci USA 96:7974–7979

    Article  CAS  PubMed  Google Scholar 

  43. LaCelle PL, Rothsteto A (1966) The passive permeability of the red blood cell in cations. J Gen Physiol 50:171–188

    CAS  PubMed  Google Scholar 

  44. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  Google Scholar 

  45. Lang F, Madlung J, Uhlemann AC, Risler T, Gulbins E (1998) Cellular taurine release triggered by stimulation of the Fas(CD95) receptor in Jurkat lymphocytes. Pflugers Arch 436:377–383

    Article  CAS  PubMed  Google Scholar 

  46. Lang F, Szabo I, Lepple-Wienhues A, Siemen D, Gulbins E (1999) Physiology of receptor-mediated lymphocyte apoptosis. News Physiol Sci 14:194–200

    CAS  PubMed  Google Scholar 

  47. Lang F, Madlung J, Bock J, Lukewille U, Kaltenbach S, Lang KS, Belka C, Wagner CA, Lang HJ, Gulbins E, Lepple-Wienhues A (2000) Inhibition of Jurkat-T-lymphocyte Na+/H+-exchanger by CD95(Fas/Apo-1)-receptor stimulation. Pflugers Arch 440:902–907

    PubMed  Google Scholar 

  48. Lang F, Madlung J, Siemen D, Ellory C, Lepple-Wienhues A, Gulbins E (2000) The involvement of caspases in the CD95(Fas/Apo-1)- but not swelling-induced cellular taurine release from Jurkat T-lymphocytes. Pflugers Arch 440:93–99

    Article  CAS  PubMed  Google Scholar 

  49. Lang KS, Roll B, Myssina S, Schittenhelm M, Scheel-Walter HG, Kanz L, Fritz J, Lang F, Huber SM, Wieder T (2002) Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol Biochem 12:365–372

    PubMed  Google Scholar 

  50. Lang KS, Fillon S, Schneider D, Rammensee HG, Lang F (2002) Stimulation of TNF alpha expression by hyperosmotic stress. Pflugers Arch 443:798–803

    Article  CAS  PubMed  Google Scholar 

  51. Lang KS, Duranton C, Poehlmann H, Myssina S, Bauer C, Lang F, Wieder T, Huber SM (2003) Cation channels trigger apoptotic death of erythrocytes. Cell Death Diff 10:249–256

    Article  CAS  Google Scholar 

  52. Lang KS, Myssina S, Tanneur V, Wieder T, Huber SM, Lang F, Duranton C (2003) Inhibition of erythrocyte cation channels and apoptosis by ethylisopropylamiloride. Naunyn-Schmiedeberg's Arch Pharmacol 367:391–396

    Google Scholar 

  53. Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol (In press)

  54. Leinders T, van Kleef RG, Vijverberg HP (1992) Single Ca2+-activated K+ channels in human erythrocytes: Ca2+ dependence of opening frequency but not of open lifetimes. Biochim Biophys Acta 1112:67–74

    Article  CAS  PubMed  Google Scholar 

  55. Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F (1999) Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci USA 96:13795–13800

    CAS  PubMed  Google Scholar 

  56. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    PubMed  Google Scholar 

  57. Marunaka Y, Nakahari T, Tohda H (1994) Cytosolic [Cl] regulates Na+ absorption in fetal alveolar epithelium?: roles of cAMP and Cl channels. Jpn J Physiol 44 (Suppl 2):S281–S288

    CAS  PubMed  Google Scholar 

  58. Mavelli I, Ciriolo MR, Rossi L, Meloni T, Forteleoni G, De Flora A, Benatti U, Morelli A, Rotilio G (1984) Favism: a hemolytic disease associated with increased superoxide dismutase and decreased glutathione peroxidase activities in red blood cells. Eur J Biochem 139:13–18

    CAS  PubMed  Google Scholar 

  59. Michea L, Ferguson DR, Peters EM, Andrews PM, Kirby MR, Burg MB (2000) Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells. Am J Physiol 278:F209–F218

    CAS  Google Scholar 

  60. Moran J, Hernandez-Pech X, Merchant-Larios H, Pasantes-Morales H (2000) Release of taurine in apoptotic cerebellar granule neurons in culture. Pflugers Arch 439:271–277

    Article  PubMed  Google Scholar 

  61. Pellegrino M, Pellegrini M (1998) Modulation of Ca2+-activated K+ channels of human erythrocytes by endogenous cAMP-dependent protein kinase. Pflugers Arch 436:749–756

    Article  CAS  PubMed  Google Scholar 

  62. Piccinini G, Minetti G, Balduini C, Brovelli A (1995) Oxidation state of glutathione and membrane proteins in human red cells of different age. Mech Ageing Dev 78:15–26

    Article  CAS  PubMed  Google Scholar 

  63. Roger F, Martin PY, Rousselot M, Favre H, Feraille E (1999) Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle's loop. Requirement of p38 kinase for the regulatory volume increase response. J Biol Chem 274:34103–34110

    CAS  PubMed  Google Scholar 

  64. Romero PJ, Romero EA, Winkler MD (1997) Ionic calcium content of light dense human red cells separated by Percoll density gradients. Biochim Biophys Acta 1323:23–28

    Article  CAS  PubMed  Google Scholar 

  65. Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274:1194–1197

    CAS  PubMed  Google Scholar 

  66. Seidler NW, Swislocki NI (1991) Ca2+ transport activities of inside-out vesicles prepared from density-separated erythrocytes from rat and human. Mol Cell Biochem 105:159–169

    CAS  PubMed  Google Scholar 

  67. Shindo M, Imai Y, Sohma Y (2000) A novel type of ATP block on a Ca2+-activated K+ channel from bullfrog erythrocytes. Biophys J 79:287–297

    CAS  PubMed  Google Scholar 

  68. Szabo I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottmann K, Pongs O, Lang F (1996) Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem 271:20465–20469

    CAS  PubMed  Google Scholar 

  69. Szabo I, Gulbins E, Lang F (1997) Regulation of Kv1.3 during Fas-induced apoptosis. Cell Physiol Biochem 7:148–158

    CAS  Google Scholar 

  70. Szabo I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F (1998) Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci USA 95:6169–6174

    CAS  PubMed  Google Scholar 

  71. Teijeiro R, Rios R, Costoya JA, Castro R, Bello JL, Devesa J, Arce VM (2002) Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53. Cell Physiol Biochem 12:31–38

    Article  CAS  PubMed  Google Scholar 

  72. Tohda H, Foskett JK, O'Brodovich H, Marunaka Y (1994) Cl regulation of a Ca2+-activated nonselective cation channel in beta-agonist-treated fetal distal lung epithelium. Am J Physiol 266:C104–C109

    CAS  PubMed  Google Scholar 

  73. Volk T, Frömter E, Korbmacher C (1995) Hypertonicity activates nonselective cation channels in mouse cortical collecting duct cells. Proc Natl Acad Sci USA 92:8478–8482

    CAS  PubMed  Google Scholar 

  74. Wehner F, Sauer H, Kinne RK (1995) Hypertonic stress increases the Na+ conductance of rat hepatocytes in primary culture. J Gen Physiol 105:507–535

    PubMed  Google Scholar 

  75. Wehner F, Bohmer C, Heinzinger H, van den Boom F, Tinel H (2000) The hypertonicity-induced Na+ conductance of rat hepatocytes: physiological significance and molecular correlate. Cell Physiol Biochem 10:335–340

    CAS  PubMed  Google Scholar 

  76. Zidek W, Losse H, Lange-Asschenfeldt H, Vetter H (1985) Intracellular chloride in essential hypertension. Clin Sci 68:45–47

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic. This study was supported by the Deutsche Forschungsgemeinschaft, Nr. La 315/4-3, La 315/6-1, DFG Schwerpunkt Intrazelluläre Lebensformen La 315/11-1 and the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Center for Interdisciplinary Clinical Research) 01 KS 9602 and by the Forschungsschwerpunktprogramm des Landes Baden-Württemberg, Dynamik und Modulation zellulärer Infektionsprozesse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, F., Lang, K.S., Wieder, T. et al. Cation channels, cell volume and the death of an erythrocyte. Pflugers Arch - Eur J Physiol 447, 121–125 (2003). https://doi.org/10.1007/s00424-003-1150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1150-8

Keywords

Navigation