Skip to main content

Advertisement

Log in

In vivo 31P NMR spectroscopy assessment of skeletal muscle bioenergetics after spinal cord contusion in rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Muscle paralysis after spinal cord injury leads to muscle atrophy, enhanced muscle fatigue, and increased energy demands for functional activities. Phosphorus magnetic resonance spectroscopy (31P-MRS) offers a unique non-invasive alternative of measuring energy metabolism in skeletal muscle and is especially suitable for longitudinal investigations. We determined the impact of spinal cord contusion on in vivo muscle bioenergetics of the rat hind limb muscle using 31P-MRS.

Methods

A moderate spinal cord contusion injury (cSCI) was induced at the T8–T10 thoracic spinal segments. 31P-MRS measurements were performed weekly in the rat hind limb muscles for 3 weeks. Spectra were acquired in a Bruker 11 T/470 MHz spectrometer using a 31P surface coil. The sciatic nerve was electrically stimulated by subcutaneous needle electrodes. Spectra were acquired at rest (5 min), during stimulation (6 min), and recovery (20 min). Phosphocreatine (PCr) depletion rates and the pseudo first-order rate constant for PCr recovery (k PCr) were determined. The maximal rate of PCr resynthesis, the in vivo maximum oxidative capacity (V max) and oxidative adenosine triphosphate (ATP) synthesis rate (Q max) were subsequently calculated.

Results

One week after cSCI, there was a decline in the resting total creatine of the paralyzed muscle. There was a significant reduction (~24 %) in k PCr measures of the paralyzed muscle, maximum in vivo mitochondrial capacity (V max) and the maximum oxidative ATP synthesis rate (Q max) at 1 week post-cSCI. During exercise, the PCr depletion rates in the paralyzed muscle one week after injury were rapid and to a greater extent than in a healthy muscle.

Conclusions

Using in vivo MRS assessments, we reveal an acute oxidative metabolic defect in the paralyzed hind limb muscle. These altered muscle bioenergetics might contribute to the host of motor dysfunctions seen after cSCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

31P-MRS:

31 Phosphorus magnetic resonance spectroscopy

SCI:

Spinal cord injury

[ATP]:

Absolute concentration of biochemically determined free cytosolic adenosine triphosphate

[Pi]:

Absolute concentration of inorganic phosphate

[PCr]:

Absolute concentration of phosphocreatine

[ADP]:

Absolute concentration of free cytosolic adenosine diphosphate

[ADP] [Pi]/[ATP]:

Phosphorylation ratio

V dep :

PCr depletion rate at onset of exercise

k PCr :

Rate constant of PCr recovery

V max :

Mitochondrial oxidative capacity based on recovery rate constant

Q max :

Maximum oxidative ATP synthesis rates based on k PCr and [ADP], independent of pH

References

  • Anderson DK, Howland DR et al (1995) Fetal neural grafts and repair of the injured spinal cord. Brain Pathol 5(4):451–457

    Article  CAS  PubMed  Google Scholar 

  • Argov Z, Arnold DL (2000) MR spectroscopy and imaging in metabolic myopathies. Neurol Clin 18(1):35–52

    Article  CAS  PubMed  Google Scholar 

  • Barstow TJ, Scremin AM et al (1995) Gas exchange kinetics during functional electrical stimulation in subjects with spinal cord injury. Med Sci Sports Exerc 27(9):1284–1291

    Article  CAS  PubMed  Google Scholar 

  • Basso DM, Beattie MS et al (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Bhambhani Y, Tuchak C et al (2000) Quadriceps muscle deoxygenation during functional electrical stimulation in adults with spinal cord injury. Spinal Cord 38(10):630–638

    Article  CAS  PubMed  Google Scholar 

  • Boesch C (2007) Musculoskeletal spectroscopy. J Magn Reson Imaging 25(2):321–338

    Article  PubMed  Google Scholar 

  • De Saedeleer M, Marechal G (1984) Chemical energy usage during isometric twitches of frog sartorius muscle intoxicated with an isomer of creatine, beta-guanidinopropionate. Pflugers Arch 402(2):185–189

    Article  PubMed  Google Scholar 

  • Durozard D, Gabrielle C et al (2000) Metabolism of rat skeletal muscle after spinal cord transection. Muscle Nerve 23(10):1561–1568

    Article  CAS  PubMed  Google Scholar 

  • Elliott MA, Walter GA et al (1999) Spectral quantitation by principal component analysis using complex singular value decomposition. Magn Reson Med 41(3):450–455

    Article  CAS  PubMed  Google Scholar 

  • Erecinska M, Wilson DF (1982) Regulation of cellular energy metabolism. J Membr Biol 70(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Erickson ML, Ryan TE et al (2013) Near-infrared assessments of skeletal muscle oxidative capacity in persons with spinal cord injury. Eur J Appl Physiol

  • Erkintalo M, Bendahan D et al (1998) Reduced metabolic efficiency of skeletal muscle energetics in hyperthyroid patients evidenced quantitatively by in vivo phosphorus-31 magnetic resonance spectroscopy. Metabolism 47(7):769–776

    Article  CAS  PubMed  Google Scholar 

  • Gale K, Kerasidis H et al (1985) Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol 88(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Gerrits HL, De Haan A et al (1999) Contractile properties of the quadriceps muscle in individuals with spinal cord injury. Muscle Nerve 22(9):1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Gigli I, Bussmann LE (2002) Effects of exercise on muscle metabolites and sarcoplasmic reticulum function in ovariectomized rats. Physiol Res 51(3):247–254

    CAS  PubMed  Google Scholar 

  • Gordon T, Mao J (1994) Muscle atrophy and procedures for training after spinal cord injury. Phys Ther 74(1):50–60

    CAS  PubMed  Google Scholar 

  • Gregory CM, Vandenborne K et al (2003) Human and rat skeletal muscle adaptations to spinal cord injury. Can J Appl Physiol 28(3):491–500

    Article  CAS  PubMed  Google Scholar 

  • Greiner A, Esterhammer R et al (2007) High-energy phosphate metabolism in the calf muscle of healthy humans during incremental calf exercise with and without moderate cuff stenosis. Eur J Appl Physiol 99(5):519–531

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Ikata T et al (1997) Time course of recovery from nerve injury in skeletal muscle: energy state and local circulation. J Appl Physiol 82(3):732–737

    CAS  PubMed  Google Scholar 

  • Hitchins S, Cieslar JM et al (2001) 31P NMR quantitation of phosphorus metabolites in rat heart and skeletal muscle in vivo. Am J Physiol Heart Circ Physiol 281(2):H882–H887

    CAS  PubMed  Google Scholar 

  • Hutchinson KJ, Gomez-Pinilla F et al (2004) Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain 127(Pt 6):1403–1414

    Article  PubMed  Google Scholar 

  • Idstrom JP, Subramanian VH et al (1984) Biochemical and 31P-NMR studies of the energy metabolism in relation to oxygen supply in rat skeletal muscle during exercise. Adv Exp Med Biol 169:489–496

    Article  CAS  PubMed  Google Scholar 

  • Isbell DC, Berr SS et al (2006) Delayed calf muscle phosphocreatine recovery after exercise identifies peripheral arterial disease. J Am Coll Cardiol 47(11):2289–2295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang BA, Roy RR et al (1991) Enzymatic responses of cat medial gastrocnemius fibers to chronic inactivity. J Appl Physiol 70(1):231–239

    CAS  PubMed  Google Scholar 

  • Johnston TE, Betz RR et al (2003) Implanted functional electrical stimulation: an alternative for standing and walking in pediatric spinal cord injury. Spinal Cord 41(3):144–152

    Article  CAS  PubMed  Google Scholar 

  • Johnston TE, Finson RL et al (2003) Functional electrical stimulation for augmented walking in adolescents with incomplete spinal cord injury. J Spinal Cord Med 26(4):390–400

    PubMed  Google Scholar 

  • Kemp GJ, Thompson CH et al (1994) pH control in rat skeletal muscle during exercise, recovery from exercise, and acute respiratory acidosis. Magn Reson Med 31(2):103–109

    Article  CAS  PubMed  Google Scholar 

  • Kemp GJ, Hands LJ et al (1995) Calf muscle mitochondrial and glycogenolytic ATP synthesis in patients with claudication due to peripheral vascular disease analysed using 31P magnetic resonance spectroscopy. Clin Sci (London) 89(6):581–590

    CAS  Google Scholar 

  • Kemp GJ, Sanderson AL et al (1996) Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy. NMR Biomed 9(6):261–270

    Article  CAS  PubMed  Google Scholar 

  • Kent-Braun JA, Ng AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89(3):1072–1078

    CAS  PubMed  Google Scholar 

  • Kjaer M, Mohr T et al (2001) Muscle enzyme adaptation to training and tapering-off in spinal-cord-injured humans. Eur J Appl Physiol 84(5):482–486

    Article  CAS  PubMed  Google Scholar 

  • Kushmerick MJ (1995) Bioenergetics and muscle cell types. Adv Exp Med Biol 384:175–184

    Article  CAS  PubMed  Google Scholar 

  • Levy M, Kushnir T et al (1993) In vivo 31P NMR studies of paraplegics’ muscles activated by functional electrical stimulation. Magn Reson Med 29(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Walter GA et al (2007) A quantitative study of bioenergetics in skeletal muscle lacking carbonic anhydrase III using 31P magnetic resonance spectroscopy. Proc Natl Acad Sci USA 104(1):371–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu M, Bose P et al (2008) A longitudinal study of skeletal muscle following spinal cord injury and locomotor training. Spinal Cord 46(7):488–493

    Article  CAS  PubMed  Google Scholar 

  • Lodi R, Kemp GJ et al (1997) Influence of cytosolic pH on in vivo assessment of human muscle mitochondrial respiration by phosphorus magnetic resonance spectroscopy. Magma 5(2):165–171

    Article  CAS  PubMed  Google Scholar 

  • Marro KI, Olive JL et al (2007) Time-courses of perfusion and phosphocreatine in rat leg during low-level exercise and recovery. J Magn Reson Imaging 25(5):1021–1027

    Article  PubMed  Google Scholar 

  • McCully KK, Fielding RA et al (1993) Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol 75(2):813–819

    CAS  PubMed  Google Scholar 

  • McCully KK, Iotti S et al (1994) Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J Appl Physiol 77(1):5–10

    CAS  PubMed  Google Scholar 

  • McCully K, Mancini D et al (1999) Nuclear magnetic resonance spectroscopy: its role in providing valuable insight into diverse clinical problems. Chest 116(5):1434–1441

    Article  CAS  PubMed  Google Scholar 

  • McCully KK, Mulcahy TK et al (2011) Skeletal muscle metabolism in individuals with spinal cord injury. J Appl Physiol 111(1):143–148

    Article  PubMed Central  PubMed  Google Scholar 

  • Metz GA, Curt A et al (2000) Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Meyer RA (1988) A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 254(4 Pt 1):C548–C553

    CAS  PubMed  Google Scholar 

  • Mizobata Y, Prechek D et al (1995) The duration of infection modifies mitochondrial oxidative capacity in rat skeletal muscle. J Surg Res 59(1):165–173

    Article  CAS  PubMed  Google Scholar 

  • Noble LJ, Wrathall JR (1985) Spinal cord contusion in the rat: morphometric analyses of alterations in the spinal cord. Exp Neurol 88(1):135–149

    Article  CAS  PubMed  Google Scholar 

  • Olive JL, Dudley GA et al (2003) Vascular remodeling after spinal cord injury. Med Sci Sports Exerc 35(6):901–907

    Article  PubMed  Google Scholar 

  • Paganini AT, Foley JM et al (1997) Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Am J Physiol 272(2 Pt 1):C501–C510

    CAS  PubMed  Google Scholar 

  • Pathare NC, Stevens JE et al (2006) Deficit in human muscle strength with cast immobilization: contribution of inorganic phosphate. Eur J Appl Physiol 98(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Pathare N, Vandenborne K et al (2008) Alterations in inorganic phosphate in mouse hindlimb muscles during limb disuse. NMR Biomed 21(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Reier PJ, Stokes BT et al (1992) Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Exp Neurol 115(1):177–188

    Article  CAS  PubMed  Google Scholar 

  • Scelsi R, Marchetti C et al (1982) Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Histochemical and ultrastructural aspects of rectus femoris muscle. Acta Neuropathol 57(4):243–248

    Article  CAS  PubMed  Google Scholar 

  • Scheuermann-Freestone M, Madsen PL et al (2003) Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107(24):3040–3046

    Article  CAS  PubMed  Google Scholar 

  • Shields RK (2002) Muscular, skeletal, and neural adaptations following spinal cord injury. J Orthop Sports Phys Ther 32(2):65–74

    Article  PubMed  Google Scholar 

  • Stevens JE, Liu M et al (2006) Changes in soleus muscle function and fiber morphology with one week of locomotor training in spinal cord contusion injured rats. J Neurotrauma 23(11):1671–1681

    Article  PubMed  Google Scholar 

  • Tarnopolsky MA, Parise G (1999) Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 22(9):1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Taylor DJ, Kemp GJ et al (1993) Skeletal muscle bioenergetics in myotonic dystrophy. J Neurol Sci 116(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Thompson CH, Kemp GJ et al (1995) Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis. J Appl Physiol 78(6):2131–2139

    CAS  PubMed  Google Scholar 

  • Torvinen S, Silvennoinen M et al (2012) Rats bred for low aerobic capacity become promptly fatigued and have slow metabolic recovery after stimulated, maximal muscle contractions. PLoS One 7(11):e48345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toussaint JF, Kwong KK et al (1996) Interrelationship of oxidative metabolism and local perfusion demonstrated by NMR in human skeletal muscle. J Appl Physiol 81(5):2221–2228

    CAS  PubMed  Google Scholar 

  • Tschakovsky ME, Shoemaker JK et al (1996) Vasodilation and muscle pump contribution to immediate exercise hyperemia. Am J Physiol 271(4 Pt 2):H1697–H1701

    CAS  PubMed  Google Scholar 

  • Van Beekvelt MC, Shoemaker JK et al (2001) Blood flow and muscle oxygen uptake at the onset and end of moderate and heavy dynamic forearm exercise. Am J Physiol Regul Integr Comp Physiol 280(6):R1741–R1747

    PubMed  Google Scholar 

  • van den Broek NM, Ciapaite J et al (2010) Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function. Am J Physiol Cell Physiol 299(5):C1136–C1143

    Article  PubMed  Google Scholar 

  • Vandenberghe K, Gillis N et al (1996) Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol 80(2):452–457

    CAS  PubMed  Google Scholar 

  • Veech RL, Lawson JW et al (1979) Cytosolic phosphorylation potential. J Biol Chem 254(14):6538–6547

    CAS  PubMed  Google Scholar 

  • Walter G, Vandenborne K et al (1997) Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. Am J Physiol 272(2 Pt 1):C525–C534

    CAS  PubMed  Google Scholar 

  • Wang H, Hiatt WR et al (1999) Relationships between muscle mitochondrial DNA content, mitochondrial enzyme activity and oxidative capacity in man: alterations with disease. Eur J Appl Physiol Occup Physiol 80(1):22–27

    Article  CAS  PubMed  Google Scholar 

  • Yakura JS, Waters RL et al (1990) Changes in ambulation parameters in spinal cord injury individuals following rehabilitation. Paraplegia 28(6):364–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant P01 HD059751-01A1 to K.V and the National High Magnetic Field Laboratory.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that all experimental procedures were performed in accordance with and comply by the US Government Principle for the Utilization and Care of Vertebrate Animals by approval of the Institutional Animal Care & Use Committee at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prithvi K. Shah.

Additional information

Communicated by Dick F. Stegeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P.K., Ye, F., Liu, M. et al. In vivo 31P NMR spectroscopy assessment of skeletal muscle bioenergetics after spinal cord contusion in rats. Eur J Appl Physiol 114, 847–858 (2014). https://doi.org/10.1007/s00421-013-2810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2810-9

Keywords

Navigation