Skip to main content
Log in

Chemical energy usage during isometric twitches of frog sartorius muscle intoxicated with an isomer of creatine,β-guanidinopropionate

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Frogs were injected for several weeks with β-guanidinopropionate, an isomer of creatine. Their sartorius muscles were isolated, poisoned with iodoacetate and stimulated isometrically with 75 shocks/min in nitrogen until rigor. In comparison with sartorius muscles of untreated frogs, they contained more free creatine and less phosphocreatine, but the same content in total creatine and ATP. They also contained β-guanidinopropionate both free and phosphorylated. However, muscles in rigor contained the same concentration of the phosphorylated form as resting muscles, i.e., phospho-β-guanidinopropionate was not split during contraction. The number of twitches performed before rigor was decreased. There was no change in the chemical energy usage (sum of phosphocreatine breakdown and twice ATP breakdown) per twitch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert X (1956) Le couplage énergétique de la contraction musculaire. Ed. Arscia. Bruxelles, p 315

    Google Scholar 

  • Aubert X, Marechal G, Deru M, Gillis JM (1957) Influence de l'intoxication iodacétique sur la fréquence de fusion tétanique et l'état d'activité du muscle strié. J Physiol (Paris) 49: 25–28

    Google Scholar 

  • Bergström J, Fürst P, Noree LO, Vinnars E (1974) Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36: 693–697

    Google Scholar 

  • Canfield P, Marechal G (1973) Equilibrium of nucleotides in frog sartorius muscle during an isometric tetanus at 20° C. J Physiol 232: 453–466

    Google Scholar 

  • Carlson FD, Siger A (1960) The mechanochemistry of muscular contraction. The isometric twitch. J Gen Physiol 44: 33–60

    Google Scholar 

  • Carlson FD, Hardy D, Wilkie DR (1967) The relation between heat produced and phosphorylcreatine split during isometric contraction of frog's muscle. J Physiol 189: 209–235

    Google Scholar 

  • Curtin NA, Woledge RC (1978) Energy changes and muscular contraction. Physiol Rev 58: 690–761

    Google Scholar 

  • di Jeso F, Malcovati M, Gaetani MT, Speranza ML (1967) The identification and determination of phosphagen in insects and their eggs. Comp Biochem Physiol 20: 607–618

    Google Scholar 

  • di Jeso F (1968) Qualitative and quantitative thin-layer chromatography of guanidine derivatives and differenciation of phosphagens from other phosphoryl compounds. J Chromatogr 32: 269–277

    Google Scholar 

  • Ennor AH, Morrison JF (1958) Biochemistry of the phosphagens and related guanidines. Physiol Rev 38: 631–674

    Google Scholar 

  • Ennor AH, Stoken LA (1948) The estimation of creatine. Biochem J 42: 557–563

    Google Scholar 

  • Fitch CD, Jellinek M, Mueller EJ (1974) Experimental depletion of creatine and phosphocreatine from skeletal muscle. J Biol Chem 249; 4: 1060–1063

    Google Scholar 

  • Fitch CD, Jellinek M, Fitts RH, Baldwin KM, Holloszy JO (1975) Phosphorylated β-guanidinopropionate as a substitute for phosphocreatine in rat muscle. Am J Physiol 228: 1123–1125

    Google Scholar 

  • Hill AV (1952) A discussion on the thermodynamics of elasticity in resting striated muscle. Proc R Soc Lond [Biol] 139: 464–497

    Google Scholar 

  • Hill AV (1965) Trails and trials in physiology, Edward Arnold, London, pp 374

    Google Scholar 

  • Jaworek D, Gruber W, Bergmeyer HU (1970) In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse II. Verlag Chemie, Weinheim, pp 2020–2024

    Google Scholar 

  • Lohmann K (1934) Über die enzymatische Aufspaltung der Kreatinphosphorsäure; zugleich ein Beitrag zum Chemismus der Muskelkontraktion. Biochem Z 271: 264–277

    Google Scholar 

  • Lundsgaard E (1930) Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem Z 217: 162–177

    Google Scholar 

  • Marechal G (1964) Le métabolisme de la phosphocreatine et de l'adénosine triphosphate durant la contraction musculaire. Ed Arscia, Bruxelles, pp 184

    Google Scholar 

  • Mommaerts WFHM (1969) Energetics of muscular contraction. Physiol Rev 40: 427–508

    Google Scholar 

  • Mommaerts WFHM, Schilling MO (1955) Interruption of muscular contraction by rapid cooling. Am J Physiol 182: 579–584

    Google Scholar 

  • Perry TL, Hansen S, Tischler B, Bunting R, Berry K (1967) Carnosinemia. A new metabolic disorder associated with neurologic disease and mental defect. N Engl J Med 277: 1219–1227

    Google Scholar 

  • Rosenberg H, Ennor AH, Morrison JF (1956) The estimation of arginine. Biochem J 63: 153–159

    Google Scholar 

  • Rowley GL, Greenleaf AL, Kenyon GL (1971) On the specificity of creatinekinase. New glycocyamines and glycocyamine analogs related to creatine. J Am Chem Soc 97: 5542–5551

    Google Scholar 

  • Thoaï NV, Roche J (1964) Diversity of phosphagens. In: Leone CA (ed) Taxonomic biochemistry and serology. Ronald Press, New York, p 347–362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Saedeleer, M., Marechal, G. Chemical energy usage during isometric twitches of frog sartorius muscle intoxicated with an isomer of creatine,β-guanidinopropionate. Pflugers Arch. 402, 185–189 (1984). https://doi.org/10.1007/BF00583333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583333

Key words

Navigation