Skip to main content
Log in

Non-thermal modification of heat-loss responses during exercise in humans

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This review focuses on the characteristics of heat-loss responses during exercise with respect to non-thermal factors. In addition, the effects of physical training on non-thermal heat-loss responses are discussed. When a subject is already sweating the sweating rate increases at the onset of dynamic exercise without changes in core temperature, while cutaneous vascular conductance (skin blood flow) is temporarily decreased. Although exercise per se does not affect the threshold for the onset of sweating, it is possible that an increase in exercise intensity induces a higher sensitivity of the sweating response. Exercise increases the threshold for cutaneous vasodilation, and at higher exercise intensities, the sensitivity of the skin-blood-flow response decreases. Facilitation of the sweating response with increased exercise intensity may be due to central command, peripheral reflexes in the exercising muscle, and mental stimuli, whereas the attenuation of skin-blood-flow responses with decreased cutaneous vasodilation is related to many non-thermal factors. Most non-thermal factors have negative effects on magnitude of cutaneous vasodilation; however, several of these factors have positive effects on the sweating response. Moreover, thermal and non-thermal factors interact in controlling heat-loss responses, with non-thermal factors having a greater impact until core temperature elevations become significant, after which core temperature primarily would control heat loss. Finally, as with thermally induced sweating responses, physical training seems to also affect sweating responses governed by non-thermal factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araki T, Inoue M, Fujiwara H (1979) Experimental studies on sweating for exercise prescription: total body sweat rate in relation to workload in physically trained adult males. J Hum Ergol 8:91–99

    CAS  Google Scholar 

  • Benzinger TH (1959) On physical heat regulation and sense of temperature in man. Proc Natl Acad Sci 45:645–659

    Article  CAS  PubMed  Google Scholar 

  • Bramble DM, Lieberman DE (2004) Endurance running and the evolution of Homo. Nature 432:345–352

    Article  CAS  PubMed  Google Scholar 

  • Brengelmann GL, Johnson JM, Hermansen L, Rowell LB (1977) Altered control of skin blood flow during exercise at high internal temperatures. J Appl Physiol 43:790–794

    CAS  PubMed  Google Scholar 

  • Carter RII, Wilson TE, Watenpaugh DE, Smith ML, Crandall CG (2002) Effects of mode of exercise recovery on thermoregulatory and cardiovascular responses. J Appl Physiol 93:1918–1924

    PubMed  Google Scholar 

  • Chappuis P, Pittet P, Jequier E (1976) Heat storage regulation in exercise during thermal transients. J Appl Physiol 40:384–392

    CAS  PubMed  Google Scholar 

  • Christensen EH, Nielsen M (1942) Investigation of the circulation in the skin at the beginning of muscular work. Acta Physiol Scand 4:162–170

    Article  Google Scholar 

  • Crandall CG, Musick J, Hatch JP, Kellogg DL Jr, Johnson JM (1995) Cutaneous vascular and sudomotor responses to isometric exercise in humans. J Appl Physiol 79:1946–1950

    CAS  PubMed  Google Scholar 

  • Crandall CG, Stephens DP, Johnson JM (1998) Muscle metaboreceptor modulation of cutaneous active vasodilation. Med Sci Sports Exerc 30:490–496

    CAS  PubMed  Google Scholar 

  • Crandall CG, Levine BD, Etzel RA (1999) Effect of increasing central venous pressure during passive heating on skin blood flow. J Appl Physiol 86:605–610

    CAS  PubMed  Google Scholar 

  • DiPasquale DM, Kolkhorst FW, Nichols JF, Buono MJ (2002) Effect of acute normobaric hypoxia on peripheral sweat rate. High Alt Med Biol 3:289–292

    Article  PubMed  Google Scholar 

  • Dodt C, Gunnarsson T, Elam M, Karlsson T, Wallin BG (1995) Central blood volume influences sympathetic sudomotor nerve traffic in warm humans. Acta Physiol Scand 155:41–51

    Article  CAS  PubMed  Google Scholar 

  • Eiken O, Mekjavic BI (2004) Ischaemia in working muscle potentiates the exercise-induced sweating response in man. Acta Physiol Scand 181:305–311

    Article  CAS  PubMed  Google Scholar 

  • Eldridge FL, Millhorn DE, Waldrop TG (1981) Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211:844–846

    Article  CAS  PubMed  Google Scholar 

  • Fortney SM, Nadel ER, Wenger CB, Bove JR (1981) Effect of blood volume on sweating rate and blood fluids in exercising humans. J Appl Physiol 51:1594–1600

    CAS  PubMed  Google Scholar 

  • Fortney SM, Wenger CB, Bove JR, Nadel ER (1984) Effect of hyperosmolality on control of blood flow and sweating. J Appl Physiol Respirat Environ Exercise Physiol 57:1688–1695

    CAS  Google Scholar 

  • Fortney SM, Vroman NB, Beckett WS, Permutt S, LaFrance ND (1988) Effect of exercise hemoconcentration and hyperosmolality on exercise responses. J Appl Physiol 65:519–524

    CAS  PubMed  Google Scholar 

  • Friedman DB, Johnson JM, Mitchell JH, Secher NH (1991) Neural control of the forearm cutaneous vasoconstrictor response to dynamic exercise. J Appl Physiol 71:1892–1896

    CAS  PubMed  Google Scholar 

  • Gagnon D, Jay O, Reardon FD, Journeay WS, Kenny GP (2008) Hyperthermia modifies the nonthermal contribution to postexercise heat loss responses. Med Sci Sports Exerc 40:513–522

    Article  PubMed  Google Scholar 

  • Gisolfi CV, Robinson S (1970) Central and peripheral stimuli regulating sweating during intermittent work in men. J Appl Physiol 29:761–768

    CAS  PubMed  Google Scholar 

  • Gisolfi CV, Wenger CB (1984) Temperature regulation during exercise: old concepts, new idea. Exerc Sports Sci Rev 12:339–372

    Article  CAS  Google Scholar 

  • Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86:1032–1039

    CAS  PubMed  Google Scholar 

  • Hertel H, Howaldt B, Mense S (1976) Responses of group IV and group III muscle afferents to thermal stimuli. Brain Res 113:201–205

    Article  CAS  PubMed  Google Scholar 

  • Hirata K, Nagasaka T, Hirai A, Hirashita M, Takahata T (1984) Cutaneous vascular tone during heat load modified by exercise intensity. J Therm Biol 9:117–120

    Article  Google Scholar 

  • Ito T, Itoh T, Hayano T, Yamauchi K, Takamata A (2005) Plasma hyperosmolality augments peripheral vascular response to baroreceptor unloading during heat stress. Am J Physiol Regul Integr Comp Physiol 289:R432–R440

    CAS  PubMed  Google Scholar 

  • Johnson JM (1979) Responses of forearm blood flow to graded leg exercise in man. J Appl Physiol Respirat Environ Exercise Physiol 46:457–462

    CAS  Google Scholar 

  • Johnson JM (1986) Nonthermoregulatory control of human skin blood flow. J Appl Physiol 61:1613–1622

    CAS  PubMed  Google Scholar 

  • Johnson JM, Park MK (1981) Effect of upright exercise on threshold for cutaneous vasodilation and sweating. J Appl Physiol 50:814–818

    CAS  PubMed  Google Scholar 

  • Johnson JM, Park MK (1982) Effect of heat stress on cutaneous vascular responses to the initiation of exercise. J Appl Physiol 53:744–749

    Article  CAS  PubMed  Google Scholar 

  • Johnson JM, Rowell LB, Brengelman GL (1974) Modification of the skin blood flow–body temperature relationship by upright exercise. J Appl Physiol 37:880–886

    CAS  PubMed  Google Scholar 

  • Journeay WS, Reardon FD, Martin CR, Kenny GP (2004) Control of cutaneous vascular conductance and sweating during recovery from dynamic exercise in humans. J Appl Physiol 96:2207–2212

    Article  PubMed  Google Scholar 

  • Kacin A, Golja P, Eiken O, Tipton MJ, Gorjanc J, Mekjavic IB (2005) Human temperature regulation during cycling with moderate leg ischaemia. Eur J Appl Physiol 95:213–220

    Article  PubMed  Google Scholar 

  • Kellogg DL Jr, Johnson JM, Kosiba WA (1990) Baroreflex control of the cutaneous active vasodilator system in humans. Circ Res 66:1420–1426

    PubMed  Google Scholar 

  • Kellogg DL Jr, Johnson JM, Kosiba WA (1991) Control of internal temperature threshold for active cutaneous vasodilation by dynamic exercise. J Appl Physiol 71:2476–2483

    PubMed  Google Scholar 

  • Kellogg DL Jr, Johnson JM, Kenney WL, Pérgola PE, Kosiba WA (1993) Mechanisms of control of skin blood flow during prolonged exercise in humans. Am J Physiol 265:H562–H568

    PubMed  Google Scholar 

  • Kenny GP, Journeay WS (2010) Human thermoregulation: separating thermal and nonthermal effects on heat loss. Front Biosci 15:259–290

    Article  CAS  PubMed  Google Scholar 

  • Kenny GP, Periard J, Journeay WS, Sigal RJ, Reardon FD (2003a) Cutaneous active vasodilation in humans during passive heating postexercise. J Appl Physiol 95:1025–1031

    PubMed  Google Scholar 

  • Kenny GP, Periard J, Journeay WS, Sigal RJ, Reardon D (2003b) Effect of exercise intensity on the postexercise sweating threshold. J Appl Physiol 95:2355–2360

    PubMed  Google Scholar 

  • Kolka MA, Stephenson LA, Rock PB, Gonzalez RR (1987) Local sweating and cutaneous blood flow during exercise in hypobaric environments. J Appl Physiol 62:2224–2229

    CAS  PubMed  Google Scholar 

  • Kondo N (1999) The control of sweating rate and skin blood flow during exercise. In: Nose H, Gisolfi CV, Imaizumi K (eds) Exercise, nutrition and environmental stress, vol 1. Cooper Publishing Group, Traverse City, IL, pp 153–178

  • Kondo N (2005) The effects of non-thermoregulatory factors on heat loss responses during exercise. Jpn J Biometeorol 42:39–53 (in Japanese)

    Google Scholar 

  • Kondo N, Nishiyasu T, Nabekura Y, Ikegami H (1986) Comparison of sweating control during rest and exercise as evidenced by frequency of sweat expulsions—with regard to a transient stage. Jpn J Biometeorol 24:135–144 (in Japanese)

    Google Scholar 

  • Kondo N, Nishiyasu T, Ikegami H (1996) The influence of exercise intensity on sweating efficiency of the whole body in a mild thermal condition. Ergonomics 39:225–231

    Article  CAS  PubMed  Google Scholar 

  • Kondo N, Tominaga H, Shiojiri T, Aoki K, Takano S, Shibasaki M, Koga S (1997) Sweating responses to passive and active limb movements. J Therm Biol 22:351–356

    Article  Google Scholar 

  • Kondo N, Takano S, Aoki K, Shibasaki M, Tominaga H, Inoue Y (1998) Regional differences in the effect of exercise intensity on thermoregulatory sweating and cutaneous vasodilation. Acta Physiol Scand 164:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kondo N, Tominaga H, Shibasaki M, Aoki K, Koga S, Nishiyasu T (1999) Modulation of the thermoregulatory sweating response to mild hyperthermia during activation of the muscle metaboreflex in humans. J Physiol (Lond) 515:591–598

    Article  CAS  Google Scholar 

  • Kondo N, Tominaga H, Shibasaki M, Aoki K, Okada S, Nishiyasu T (2000) Effects of exercise intensity on the sweating response to a sustained static exercise. J Appl Physiol 88:1590–1596

    CAS  PubMed  Google Scholar 

  • Kondo N, Shibasaki M, Aoki K, Koga S, Inoue Y, Crandall CG (2001) Function of human eccrine sweat glands during dynamic exercise and passive heating. J Appl Physiol 90:1877–1881

    CAS  PubMed  Google Scholar 

  • Kondo N, Horikawa N, Aoki K, Shibasaki M, Inoue Y, Nishiyasu T, Crandall CG (2002a) Sweating responses to a sustained static exercise is dependent on thermal load in humans. Acta Physiol Scand 175:289–295

    Article  CAS  PubMed  Google Scholar 

  • Kondo N, Yanagimoto S, Aoki K, Koga S, Inoue Y (2002b) Effect of activated sweat glands on the intensity-dependent sweating response to sustained static exercise in mildly heated humans. Jpn J Physiol 52:229–233

    Article  PubMed  Google Scholar 

  • Kondo N, Yanagimoto S, Nishiyasu T, Crandall CG (2003) Effects of muscle metaboreflex on cutaneous blood flow response from glabrous and non-glabrous skin in mildly heated human. J Appl Physiol 94:1829–1835

    PubMed  Google Scholar 

  • Krogh A, Lindhard L (1913) The regulation of respiration and circulation during the initial stages of muscular work. J Physiol (Lond) 47:112–136

    CAS  Google Scholar 

  • Kuno Y (1956) Human perspiration. Charles C. Thomas, Springfield, IL

    Google Scholar 

  • Machado-Moreira CA, Caldwell JN, Mekjavic IB, Taylor NA (2008) Sweat secretion from palmar and dorsal surfaces of the hands during passive and active heating. Aviat Space Environ Med 79:1034–1040

    Article  PubMed  Google Scholar 

  • Mack GW, Nose H, Nadel ER (1988) Role of cardiopulmonary baroreflexes during dynamic exercise. J Appl Physiol 65:1827–1832

    CAS  PubMed  Google Scholar 

  • Mack GW, Nose H, Takamata A, Okuno T, Morimoto T (1994) Influence of exercise intensity and plasma volume on active cutaneous vasodilation in humans. Med Sci Sports Exerc 26:209–216

    Article  CAS  PubMed  Google Scholar 

  • Mack GW, Nishiyasu T, Shi X (1995) Baroreceptor modulation of cutaneous vasodilator and sudomotor responses to thermal stress in humans. J Physiol (Lond) 483:537–547

    CAS  Google Scholar 

  • Mack GW, Cordero D, Peters J (2001) Baroreceptor modulation of active cutaneous vasodilation during dynamic exercise in humans. J Appl Physiol 90:1464–1473

    CAS  PubMed  Google Scholar 

  • Mitono H, Endoh H, Okazaki K, Ichinose T, Masuki S, Takamata A, Nose H (2005) Acute hypoosmolality attenuates the suppression of cutaneous vasodilation with increased exercise intensity. J Appl Physiol 99:902–908

    Article  PubMed  Google Scholar 

  • Miyagawa T, Ogawa T, Asayama M, Yamashita Y (1985) Sweating response to abrupt changes in workload. J Physiol Soc Jpn 47:17–24 (in Japanese)

    CAS  Google Scholar 

  • Montain SC, Latzka WA, Sawka MN (1995) Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J Appl Physiol 79:1434–1439

    CAS  PubMed  Google Scholar 

  • Morimoto T, Itoh T (1998) Thermoregulation and body fluid osmolality. J Basic Clin Physiol Pharmacol 9:51–72

    CAS  PubMed  Google Scholar 

  • Nadel ER (1977) Problems with temperature regulation during exercise. Academic Press, New York

  • Nadel ER, Bullard RW, Stolwijk JAJ (1971a) Importance of skin temperature in the regulation of sweating. J Appl Physiol 31:80–87

    CAS  PubMed  Google Scholar 

  • Nadel ER, Mitchell JW, Saltin B, Stolwijk JAJ (1971b) Peripheral modifications to the central drive for sweating. J Appl Physiol 31:828–833

    CAS  PubMed  Google Scholar 

  • Nadel ER, Fortney SM, Wenger CB (1980) Effect of hydration state of circulatory and thermal regulations. J Appl Physiol 49:715–721

    CAS  PubMed  Google Scholar 

  • Nagashima K, Nose H, Takamata A, Morimoto T (1998) Effect of continuous negative-pressure breathing on skin blood flow during exercise in a hot environment. J Appl Physiol 84:1845–1851

    CAS  PubMed  Google Scholar 

  • Nakayama T, Ohnuki Y, Niwa K (1987) Fall in skin temperature during exercise. Jpn J Physiol 27:423–437

    Google Scholar 

  • Nielsen M (1938) Die Regulation der Körpertemperatur bei Muskelarbeit. Scand Arch Physiol 79:193–230

    Google Scholar 

  • Nielsen B (1969) Thermoregulation in rest and exercise. Acta Physiol Scand Suppl 323

  • Nielsen B, Nielsen M (1965) Influence of passive and active heating on the temperature regulation of man. Acta Physiol Scand 64:323–331

    Article  CAS  PubMed  Google Scholar 

  • Nybo L, Secher NH (2004) Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 72:223–261

    Article  PubMed  Google Scholar 

  • O’Brien C, Hoyt RW, Buller MJ, Castellani JW, Young AJ (1998) Telemetry pill measurement of core temperature in humans during active heating and cooling. Med Sci Sports Exerc 30:468–472

    PubMed  Google Scholar 

  • Ogawa T (1975) Thermal influence on palmar sweating and mental influence on generalized sweating in man. Jpn J Physiol 25:525–536

    CAS  PubMed  Google Scholar 

  • Ogawa T, Sugenoya J (1993) Pulsatile sweating and sympathetic sudomotor activity. Jpn J Physiol 43:275–289

    Article  CAS  PubMed  Google Scholar 

  • Robinson S (1962) The regulation of sweating in exercise. In: Advances in biology of skin, vol 3. Pergamon, New York, pp 152–162

  • Robinson S, Meyer FR, Newton JL, Ts’ao CH, Holgersen L (1965) Relations between sweating, cutaneous blood flow, and body temperature in work. J Appl Physiol 20:575–582

    CAS  PubMed  Google Scholar 

  • Smolander J, Saalo J, Korhonen O (1991) Effect of workload on cutaneous vascular response to exercise. J Appl Physiol 71:1614–1619

    CAS  PubMed  Google Scholar 

  • Saltin B, Gagge AP (1971) Sweating and body temperatures during exercise. Int J Biometeorol 15:189–194

    Article  CAS  PubMed  Google Scholar 

  • Saltin B, Gagge AP, Stolwijk JAJ (1968) Muscle temperature during submaximal exercise in man. J Appl Physiol 25:679–688

    CAS  PubMed  Google Scholar 

  • Sawka MN, Gonzalez RR, Young AJ, Muza SR, Pandolf KB, Latzka WA, Dennis RC, Valeri CR (1988) Polycythemia and hydration: effects on thermoregulation and blood volume during exercise-heat stress. Am J Physiol 255:R456–R463

    CAS  PubMed  Google Scholar 

  • Shibasaki M, Kondo N, Tominaga H, Aoki K, Hasegawa E, Idota N, Moriwaki M (1998) Continuous measurement of tympanic temperature with a new infrared method using an optical fiber. J Appl Physiol 85:921–926

    CAS  PubMed  Google Scholar 

  • Shibasaki M, Kondo N, Crandall CG (2001) Evidence for metaboreceptor stimulation of sweating in normothermic and heat-stressed humans. J Physiol (Lond) 534:605–611

    Article  CAS  Google Scholar 

  • Shibasaki M, Kondo N, Crandall CG (2003a) Non-thermoregulatory modulation of sweating in humans. Exerc Sport Sci Rev 31:34–39

    Article  PubMed  Google Scholar 

  • Shibasaki M, Secher N, Selmer C, Kondo N, Crandall CG (2003b) Central command is capable of modulating sweating from non-glabrous skin. J Physiol (Lond) 553:999–1004

    Article  CAS  Google Scholar 

  • Shibasaki M, Sakai M, Oda M, Crandall CG (2004) Muscle mechanoreceptor modulation of sweat rate during recovery from moderate exercise. J Appl Physiol 96:2115–2119

    Article  PubMed  Google Scholar 

  • Shibasaki M, Secher N, Johnson JM, Crandall CG (2005) Central command and the cutaneous vascular response to isometric exercise in heated humans. J Physiol (Lond) 565:667–673

    Article  CAS  Google Scholar 

  • Shibasaki M, Wilson TE, Crandall CG (2006) Neural control of mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol 100:1692–1701

    Article  PubMed  Google Scholar 

  • Shibasaki M, Aoki K, Morimoto K, Johnson JM, Takamata A (2009a) Plasma hyperosmolality elevates the internal temperature threshold for active thermoregulatory vasodilation during heat stress in humans. Am J Physiol Regul Integr Comp Physiol 297:R1706–R1712

    CAS  PubMed  Google Scholar 

  • Shibasaki M, Rasmussen P, Secher NH, Crandall CG (2009b) Neural and non-neural control of skin blood flow during isometric handgrip exercise in the heat stressed human. J Physiol 587:2101–2107

    CAS  PubMed  Google Scholar 

  • Simmons GH, Minson CT, Cracowski JL, Halliwill JR (2007) Systemic hypoxia causes cutaneous vasodilation in healthy humans. J Appl Physiol 103:608–615

    Article  PubMed  Google Scholar 

  • Solack SD, Brengelmann GL, Freund PR (1985) Sweat rate vs. forearm blood flow during lower body negative pressure. J Appl Physiol 58:1546–1552

    CAS  PubMed  Google Scholar 

  • Takamata A, Nagashima K, Nose H, Morimoto T (1997) Osmoregulatory inhibition of thermally induced cutaneous vasodilation in passively heated humans. Am J Physiol 273:R197–R204

    CAS  PubMed  Google Scholar 

  • Takamata A, Nagashima K, Nose H, Morimoto T (1998) Role of plasma osmolality in the delayed onset of thermal cutaneous vasodilation during exercise in humans. Am J Physiol Regul Integr Comp Physiol 275:R286–R290

    CAS  Google Scholar 

  • Takamata A, Nose H, Kinoshita T, Hirose M, Itoh T, Morimoto T (2000) Effect of acute hypoxia on vasopressin release and intravascular fluid during dynamic exercise in humans. Am J Physiol Regul Integr Comp Physiol 279:R161–R168

    CAS  PubMed  Google Scholar 

  • Takano S, Kondo N, Shibasaki M, Aoki K, Inoue Y, Iwata A (1996) The influence of work loads on regional differences in sweating rates. Jpn J Physiol 46:183–186

    Article  CAS  PubMed  Google Scholar 

  • Tam HS, Darling RC, Chen HY, Downey JA (1978) Sweating response: a mean of evaluating the set-point theory during exercise. J Appl Physiol Respirat Environ Exercise Physiol 45:451–458

    CAS  Google Scholar 

  • Taylor WF, Johnson JM, Kosiba WA, Kwan AM (1988) Graded cutaneous vascular responses to dynamic leg exercise. J Appl Physiol 64:1803–1809

    CAS  PubMed  Google Scholar 

  • Taylor WF, Johnson JM, Kosiba WA, Kwan AM (1989) Cutaneous vascular responses to isometric handgrip exercise. J Appl Physiol 66:1586–1592

    CAS  PubMed  Google Scholar 

  • Taylor WF, Johnson JM, Park MK (1990) Role of absolute and relative load in skin vasoconstrictor responses to exercise. J Appl Physiol 69:1131–1136

    CAS  PubMed  Google Scholar 

  • Timbal J, Loncle M, Boutelier C, Marotte H, Colin J (1978) Comparison of mean body temperature during sweating at rest and during exercise. In: Houdas Y, Guieu JD (eds) New Trends Thermal Physiol, Masson, Paris, pp 161–163

  • van Beaumont W, Bullard RW (1963) Sweating: its rapid response to muscular work. Science 141:643–646

    Article  Google Scholar 

  • van Beaumont W, Bullard RW (1966) Sweating: exercise stimulation during circulatory arrest. Science 152:1521–1523

    Article  PubMed  Google Scholar 

  • Vissing SF (1997) Differential activation of sympathetic discharge to skin and skeletal muscle in humans. Acta Physiol Scand suppl 639

  • Vissing SF, Scherrer U, Victor RG (1991) Stimulation of skin sympathetic nerve discharge by central command: differential control of sympathetic outflow to skin and skeletal muscle during static contraction. Circ Res 69:228–238

    CAS  PubMed  Google Scholar 

  • Wenger CB, Roberts MF, Stolwijk JAJ, Nadel ER (1975) Forearm blood flow during body temperature transients produced by leg exercise. J Appl Physiol 38:58–63

    CAS  PubMed  Google Scholar 

  • Wilson TE, Cui J, Crandall CG (2001) Absence of arterial baroreflex modulation of skin sympathetic activity and sweat rate during whole-body heating in humans. J Physiol 536:615–623

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki F, Sone F (2006) Different vascular responses in glabrous and nonglabrous skin with increasing core temperature during exercise. Eur J Appl Physiol 97:582–590

    Article  PubMed  Google Scholar 

  • Yamazaki F, Kondo N, Ikegami H (1991) The role of central and peripheral mechanisms in the sweat rate change during exercise. Jpn J Biometeorol 28:95–106 (in Japanese)

    Google Scholar 

  • Yamazaki F, Sone R, Ikegami H (1994) Responses of sweating and body temperature to sinusoidal exercise. J Appl Physiol 76:2541–2545

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki F, Fujii N, Sone R, Ikegami H (1996) Responses of sweating and body temperature to sinusoidal exercise in physically trained men. J Appl Physiol 80:491–495

    CAS  PubMed  Google Scholar 

  • Yanagimoto S, Aoki K, Horikawa N, Shibasaki M, Inoue Y, Nishiyasu T, Kondo N (2002) Sweating response to sustained handgrip exercise in physically trained men. Acta Physiol Scand 174:31–39

    Article  CAS  PubMed  Google Scholar 

  • Yanagimoto S, Kuwahara T, Zhang Y, Koga S, Inoue Y, Kondo N (2003) Effects of exercise intensity on sweating and skin blood flow responses at the onset of dynamic exercise in mildly heated human. Am J Physiol Regul Integr Com Physiol 285:R200–R207

    CAS  Google Scholar 

Download references

Acknowledgments

We thank all of the volunteers who participated in this research and the researchers who give us important concepts for investigating the control of heat-loss responses during exercise. This study was partly supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B) (grant no. 19300221). This review is expanded based on the earlier reviews (Kondo 1999, Kondo 2005) with adding new results and papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narihiko Kondo.

Additional information

Communicated by Nigel Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, N., Nishiyasu, T., Inoue, Y. et al. Non-thermal modification of heat-loss responses during exercise in humans. Eur J Appl Physiol 110, 447–458 (2010). https://doi.org/10.1007/s00421-010-1511-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1511-x

Keywords

Navigation