Skip to main content

Human Heat Physiology

  • Chapter
  • First Online:
Sport and Physical Activity in the Heat

Abstract

The purpose of this chapter is to summarize the efferent physiological responses to heat stress—increased skin blood flow and sweating—that are necessary during sport and physical activity to maintain temperature homeostasis and thus prevent a heat-related injury. These responses facilitate heat loss so heat storage, and an accompanying increase in core temperature, is moderated. Accordingly, human heat balance is discussed along with the primary mechanisms controlling human thermoregulation during exercise heat stress. Also covered are the substantial challenges faced by the cardiovascular system as a consequence of supporting high skin blood flow and sweating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C :

Rate of heat loss via convection

E :

Rate of heat loss via evaporation

HR:

Heart rate

K :

Rate of heat loss via conduction

M :

Metabolic rate

(M − W):

Metabolic heat production

R :

Rate of heat loss via radiation

S :

Rate of heat storage

V.O2max :

Rate of maximal oxygen uptake

W :

External work

WBGT:

Wet bulb globe temperature

References

  1. Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN. Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol. 2010;109:1989–95.

    Article  PubMed  Google Scholar 

  2. Galloway SDR, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29:1240–9.

    Article  CAS  PubMed  Google Scholar 

  3. Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1:1883–928.

    Article  PubMed  Google Scholar 

  4. Santee WR, Gonzalez RR. Characteristics of the thermal environment. In: Pandolf K, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine at terrestrial extremes. Traverse City, MI: Cooper Publishing Group; 1988. p. 1–43.

    Google Scholar 

  5. Kenny GP, Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol. 2013;3:1689–719.

    Article  PubMed  Google Scholar 

  6. Lind AR. A physiological criterion for setting thermal environmental limits for everyday work. J Appl Physiol. 1963;18:51–6.

    Article  CAS  PubMed  Google Scholar 

  7. Sawka MN, Castellani JW, Cheuvront SN, Young AJ. Physiologic systems and their responses to conditions of heat and cold. In: Farrell PA, Joyner MJ, Caiozzo VJ, editors. ACSM’s advanced exercise physiology. 2nd ed. Baltimore, MD: Wolters Kluwer/Lippincott Williams & Wilkins; 2012. p. 572.

    Google Scholar 

  8. Nielson M. Die regulation der korpertemperatur bei muskelarbeit. Skand Arch Physiol. 1938;79:193–230.

    Article  Google Scholar 

  9. Boulant JA. Hypothalamic neurons regulating body temperature. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology: environmental physiology. New York: Oxford; 1996. p. 105–26.

    Google Scholar 

  10. Pierau F. Peripheral thermosensors. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. Section 4: environmental physiology. New York: Oxford University Press; 1996. p. 85–104.

    Google Scholar 

  11. Morris NB, Bain AR, Cramer MN, Jay O. Evidence that transient changes in sudomotor output with cold and warm fluid ingestion are independently modulated by abdominal, but not oral thermoreceptors. J Appl Physiol. 2014;116:1088–95.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol. 2007;292:R37–46.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson JM, Proppe DW. Cardiovascular adjustments to heat stress. In: Handbook of physiology. New York: Oxford University Press; 1996. p. 215–43.

    Google Scholar 

  14. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol. 2010;109:1221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grant RT, Holling HE. Further observations on the vascular responses of the human limb to body warming: evidence for sympathetic vasodilator nerves in the normal subject. Clin Sci. 1938;3:273–85.

    Google Scholar 

  16. Lewis T, Pickering GW. Vasodilation in the limbs in responses to warming the body; with evidence for sympathetic vasodilator nerves in man. Heart. 1931;16:33–51.

    Google Scholar 

  17. Kellogg DL Jr, Johnson JM, Kosiba WA. Competition between cutaneous active vasoconstriction and active vasodilation during exercise in humans. Am J Physiol. 1991;261:H1184–9.

    Article  PubMed  Google Scholar 

  18. Kenney WL, Johnson JM. Control of skin blood flow during exercise. Med Sci Sports Exerc. 1992;24:303–12.

    Article  CAS  PubMed  Google Scholar 

  19. Johnson JM, Park MK. Effect of heat stress on cutaneous vascular responses to the initiation of exercise. J Appl Physiol. 1982;53:744–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol (Lond). 2008;586:45–53.

    Article  CAS  Google Scholar 

  21. Kellogg DL, Johnson JM, Kosiba WA. Control of internal temperature threshold for active cutaneous vasodilation by dynamic exercise. J Appl Physiol. 1991;71:2476–82.

    Article  PubMed  Google Scholar 

  22. Taylor WF, Johnson JM, Kosiba WA, Kwan CM. Graded cutaneous vascular responses to dynamic leg exercise. J Appl Physiol. 1988;64:1803–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86:1032–9.

    Article  CAS  PubMed  Google Scholar 

  24. Brengelmann GL, Johnson JM, Hermansen L, Rowell LB. Altered control of skin blood flow during exercise at high internal temperatures. J Appl Physiol. 1977;43:790–4.

    Article  CAS  PubMed  Google Scholar 

  25. Kellogg DL Jr, Zhao JL, Wu Y. Endothelial nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. Am J Physiol Heart Circ Physiol. 2008;295:H123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kellogg DL Jr, Zhao JL, Wu Y. Neuronal nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. J Physiol (Lond). 2008;586:847–57.

    Article  CAS  Google Scholar 

  27. Bennett LA, Johnson JM, Stephens DP, Saad AR, Kellogg DL Jr. Evidence for a role for vasoactive intestinal peptide in active vasodilatation in the cutaneous vasculature of humans. J Physiol (Lond). 2003;552:223–32.

    Article  CAS  Google Scholar 

  28. Wilkins BW, Wong BJ, Tublitz NJ, McCord GR, Minson CT. Vasoactive intestinal peptide fragment VIP10-28 and active vasodilation in human skin. J Appl Physiol (1985). 2005;99:2294–301.

    Article  CAS  Google Scholar 

  29. Wong BJ, Wilkins BW, Minson CT. H1 but not H2 histamine receptor activation contributes to the rise in skin blood flow during whole body heating in humans. J Physiol (Lond). 2004;560:941–8.

    Article  CAS  Google Scholar 

  30. Wong BJ, Minson CT. Neurokinin-1 receptor desensitization attenuates cutaneous active vasodilatation in humans. J Physiol (Lond). 2006;577:1043–51.

    Article  CAS  Google Scholar 

  31. McCord GR, Cracowski JL, Minson CT. Prostanoids contribute to cutaneous active vasodilation in humans. Am J Physiol Regul Integr Comp Physiol. 2006;291:R596–602.

    Article  CAS  PubMed  Google Scholar 

  32. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54:75–159.

    Article  CAS  PubMed  Google Scholar 

  33. Lafrenz AJ, Wingo JE, Ganio MS, Cureton KJ. Effect of ambient temperature on cardiovascular drift and maximal oxygen uptake. Med Sci Sports Exerc. 2008;40:1065–71.

    Article  PubMed  Google Scholar 

  34. Nadel ER, Cafarelli E, Roberts MF, Wenger CB. Circulatory regulation during exercise in different ambient temperatures. J Appl Physiol. 1979;46:430–7.

    Article  CAS  PubMed  Google Scholar 

  35. Wingo JE, Ganio MS, Cureton KJ. Cardiovascular drift during heat stress: implications for exercise prescription. Exerc Sport Sci Rev. 2012;40:88–94.

    Article  PubMed  Google Scholar 

  36. Savard G, Nielsen B, Laszczynska J, Larsen BE, Saltin B. Muscle blood flow is not reduced in humans during moderate exercise and heat stress. J Appl Physiol. 1988;64:649–57.

    Article  CAS  PubMed  Google Scholar 

  37. Gonzalez-Alonso J, Calbet JAL. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107:824–30.

    Article  PubMed  Google Scholar 

  38. Fortney SM, Wenger CB, Bove JR, Nadel ER. Effect of hyperosmolality on control of blood flow and sweating. J Appl Physiol Respir Environ Exerc Physiol. 1984;57:1688–95.

    CAS  PubMed  Google Scholar 

  39. Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol. 2006;100:1692–701.

    Article  PubMed  Google Scholar 

  40. Sato K. The mechanism of eccrine sweat secretion. In: Gisolfi CV, Lamb DR, Nadel ER, editors. Perspectives in exercise science and sports medicine: exercise, heat, and thermoregulation. Traverse City, MI: Cooper Publishing Group; 2001.

    Google Scholar 

  41. Kellogg DL Jr, Pérgola PE, Piest KL, Kosiba WA, Crandall CG, Grossmann M, et al. Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission. Circ Res. 1995;77:1222–8.

    Article  CAS  PubMed  Google Scholar 

  42. Nadel ER, Bullard RW, Stolwijk JA. Importance of skin temperature in the regulation of sweating. J Appl Physiol. 1971;31:80–7.

    Article  CAS  PubMed  Google Scholar 

  43. Nadel ER, Mitchell JW, Saltin B, Stolwijk JA. Peripheral modifications to the central drive for sweating. J Appl Physiol. 1971;31:828–33.

    Article  CAS  PubMed  Google Scholar 

  44. Wingo JE, Low DA, Keller DM, Brothers RM, Shibasaki M, Crandall CG. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans. J Appl Physiol. 2010;109:1301–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee K, Mack GW. Role of nitric oxide in methacholine-induced sweating and vasodilation in human skin. J Appl Physiol. 2006;100:1355–60.

    Article  CAS  PubMed  Google Scholar 

  46. Welch G, Foote KM, Hansen C, Mack GW. Non-selective NOS inhibition blunts the sweat response to exercise in a warm environment. J Appl Physiol. 2009;106:796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gisolfi C, Robinson S. Central and peripheral stimuli regulating sweating during intermittent work in men. J Appl Physiol. 1970;29:761–8.

    Article  CAS  PubMed  Google Scholar 

  48. Van Beaumont W, Bullard RW. Sweating: its rapid response to muscular work. Science. 1963;141:643–6.

    Article  Google Scholar 

  49. Shibasaki M, Kondo N, Crandall CG. Evidence for metaboreceptor stimulation of sweating in normothermic and heat-stressed humans. J Physiol (Lond). 2001;534:605–11.

    Article  CAS  Google Scholar 

  50. Smith CJ, Havenith G. Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol. 2011;111:1391–404.

    Article  PubMed  Google Scholar 

  51. Armstrong LE, Hubbard RW, Jones BH, Daniels JT. Preparing Alberto Salazar for the heat of the 1984 Olympic marathon. Phys Sportsmed. 1986;14:73–81.

    Article  CAS  PubMed  Google Scholar 

  52. Gerking SD, Robinson S. Decline in the rates of sweating of men working in severe heat. Am J Physiol. 1946;147:370–8.

    CAS  PubMed  Google Scholar 

  53. Montain SJ, Latzka WA, Sawka MN. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J Appl Physiol. 1995;79:1434–9.

    Article  CAS  PubMed  Google Scholar 

  54. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90.

    Article  PubMed  Google Scholar 

  55. Cox GR, Broad EM, Riley MD, Burke LM. Body mass changes and voluntary fluid intakes of elite level water polo players and swimmers. J Sci Med Sport. 2002;5:183–93.

    Article  CAS  PubMed  Google Scholar 

  56. Broad EM, Burke LM, Cox GR, Heeley P, Riley M. Body weight changes and voluntary fluid intakes during training and competition sessions in team sports. Int J Sport Nutr. 1996;6:307–20.

    Article  CAS  PubMed  Google Scholar 

  57. Speedy DB, Noakes TD, Kimber NE, Rogers IR, Thompson JM, Boswell DR, et al. Fluid balance during and after an ironman triathlon. Clin J Sport Med. 2001;11:44–50.

    Article  CAS  PubMed  Google Scholar 

  58. Maughan RJ, Shirreffs SM, Merson SJ, Horswill CA. Fluid and electrolyte balance in elite male football (soccer) players training in a cool environment. J Sports Sci. 2005;23:73–9.

    Article  CAS  PubMed  Google Scholar 

  59. Shirreffs SM, Aragon-Vargas LF, Chamorro M, Maughan RJ, Serratosa L, Zachwieja JJ. The sweating response of elite professional soccer players to training in the heat. Int J Sports Med. 2005;26:90–5.

    Article  CAS  PubMed  Google Scholar 

  60. Burke LM, Wood C, Pyne DB, Telford DR, Saunders PU. Effect of carbohydrate intake on half-marathon performance of well-trained runners. Int J Sport Nutr Exerc Metab. 2005;15:573–89.

    Article  CAS  PubMed  Google Scholar 

  61. Bergeron MF, Maresh CM, Armstrong LE, Signorile JF, Castellani JW, Kenefick RW, et al. Fluid-electrolyte balance associated with tennis match play in a hot environment. Int J Sport Nutr. 1995;5:180–93.

    Article  CAS  PubMed  Google Scholar 

  62. Godek SF, Bartolozzi AR, Godek JJ. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment. Br J Sports Med. 2005;39:205–11; discussion 205–11.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Burke LM. Applied sports nutrition. Human Kinetics: Illinois; 2006.

    Google Scholar 

  64. Brown D, Winter EM. Fluid loss during international standard match-play in squash. In: Lees A, Maynard I, Hughes M, Reilly T, editors. Science and racket sports. London: E & FN Spon; 1998. p. 56–9.

    Google Scholar 

  65. Bergeron MF. Heat cramps: fluid and electrolyte challenges during tennis in the heat. J Sci Med Sport. 2003;6:19–27.

    Article  CAS  PubMed  Google Scholar 

  66. Sawka MN, Young AJ, Francesconi RP, Muza SR, Pandolf KB. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J Appl Physiol. 1985;59:1394–401.

    Article  CAS  PubMed  Google Scholar 

  67. Wingo JE, Cureton KJ. Body cooling attenuates the decrease in maximal oxygen uptake associated with cardiovascular drift during heat stress. Eur J Appl Physiol. 2006;98:97–104.

    Article  CAS  PubMed  Google Scholar 

  68. Wingo JE, Lafrenz AJ, Ganio MS, Edwards GL, Cureton KJ. Cardiovascular drift is related to reduced maximal oxygen uptake during heat stress. Med Sci Sports Exerc. 2005;37:248–55.

    Article  PubMed  Google Scholar 

  69. Arngrimsson SA, Stewart DJ, Borrani F, Skinner KA, Cureton KJ. Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. J Appl Physiol. 2003;94:1162–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Wingo PhD, FACSM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wingo, J.E., Crandall, C.G., Kenny, G.P. (2018). Human Heat Physiology. In: Casa, D. (eds) Sport and Physical Activity in the Heat. Springer, Cham. https://doi.org/10.1007/978-3-319-70217-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70217-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70216-2

  • Online ISBN: 978-3-319-70217-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics