Skip to main content
Log in

Proximal electrode placement improves the estimation of body composition in obese and lean elderly during segmental bioelectrical impedance analysis

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Bioelectrical impedance analysis (BIA) is an affordable, non-invasive, easy-to-operate, and fast alternative method to assess body composition. However, BIA tends to overestimate the percent body fat (%BF) in lean elderly and underestimate %BF in obese elderly people. This study examined whether proximal electrode placement eliminates this problem. Forty-two elderly men and women (64–96 years) who had a wide range of BMI [22.4 ± 3.3 kg/m2 (mean ± SD), range 16.8–33.9 kg/m2] and %BF (11.3–44.8%) participated in this study. Using 2H and 18O dilutions as the criterion for measuring total body water (TBW), we compared various BIA electrode placements; wrist-to-ankle, arm-to-arm, leg-to-leg, elbow-to-knee, five- and nine-segment models, and the combination of distal (wrists or ankles) and proximal (elbows or knees) electrodes. TBW was most strongly correlated with the square height divided by the impedance between the knees and elbows (H 2/Z proximal; r = 0.965, P < 0.001). In the wrist-to-ankle, arm-to-arm, leg-to-leg, and five-segment models, we observed systematic errors associated with %BF (P < 0.05). After including the impedance ratio of the proximal to distal segments (P/D) as an independent variable, none of the BIA methods examined showed any systematic bias against %BF. In addition, all methods were able to estimate TBW more accurately (e.g., in the wrist-to-ankle model, from R 2 = 0.90, SEE = 1.69 kg to R 2 = 0.94, SEE = 1.30 kg). The results suggest that BIA using distal electrodes alone tends to overestimate TBW in obese and underestimate TBW in lean subjects, while proximal electrodes improve the accuracy of body composition measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baumgartner RN (1996) Electrical impedance and total body electrical conductivity. In: Roche AF, Heymsfield AB, Lohman TG (eds) Human body composition. Human Kinetics, pp 79–108

  • Baumgartner RN, Heymsfield SB, Lichtman S et al (1991) Body composition in elderly people: effect of criterion estimates on predictive equations. Am J Clin Nutr 53:1345–1353

    PubMed  CAS  Google Scholar 

  • Baumgartner RN, Ross R, Heymsfield SB (1998) Does adipose tissue influence bioelectric impedance in obese men and women? J Appl Physiol 84:257–262

    PubMed  CAS  Google Scholar 

  • Blanc S, Colligan AS, Trabulsi J et al (2002) Influence of delayed isotopic equilibration in urine on the accuracy of the H-2(2) O-18 method in the elderly. J Appl Physiol 92:1036–1044

    PubMed  CAS  Google Scholar 

  • Calling S, Hedblad B, Engstrom G et al (2006) Effects of body fatness and physical activity on cardiovascular risk: risk prediction using the bioelectrical impedance method. Scand J Public Health 34:568–575

    Article  PubMed  Google Scholar 

  • Cooper AR, Page A, Fox KR et al (2000) Physical activity patterns in normal, overweight and obese individuals using minute-by-minute accelerometry. Eur J Clin Nutr 54:887–894

    Article  PubMed  CAS  Google Scholar 

  • Cornish BH, Eles PT, Thomas BJ et al (2000). The effect of electrode placement in measuring ipsilateral/contralateral segmental bioelectrical impedance. In: In vivo body composition studies, vol 904. pp 221–224

  • Coward WA (1990) Calculation of pool sizes and flux rates. In: Prentice AM (ed) The doubly-labelled water method for the measurement of energy expenditure. International Atomic Energy Agency, Vienna, Austria, pp 48–65

    Google Scholar 

  • Dempster WT, Gaughran GRL (1967) Properties of body segments based on size and weight. Am J Anat 120:33–54

    Article  Google Scholar 

  • Deurenberg P, van der Kooij K, Evers P et al (1990) Assessment of body composition by bioelectrical impedance in a population aged greater than 60 y. Am J Clin Nutr 51:3–6

    PubMed  CAS  Google Scholar 

  • DeVita P, Hortobagyi T (2003) Obesity is not associated with increased knee joint torque and power during level walking. J Biomech 36:1355–1362

    Article  PubMed  Google Scholar 

  • Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78:316–331

    Article  Google Scholar 

  • Evans WD, McClagish H, Trudgett C (1998) Factors affecting the in vivo precision of bioelectrical impedance analysis. Appl Radiat Isot 49:485–487

    Article  PubMed  CAS  Google Scholar 

  • Franckowiak SC, Fontaine K, Andersen RE (2003) Comparison of proximal and distal placements of electrodes to assess body composition by bioelectrical impedance in obese adults. J Strength Cond Res 17:522–526

    Article  PubMed  Google Scholar 

  • Frisard MI, Greenway FL, DeLany JP (2005) Comparison of methods to assess body composition changes during a period of weight loss. Obes Res 13:845–854

    Article  PubMed  Google Scholar 

  • Gudivaka R, Schoeller DA, Kushner RF (1994) Effect of body position, electrode placement and time on prediction of total body water by multifrequency bioelectrical impedance analysis. Age Nutr 5:111–117

    Google Scholar 

  • Haapala I, Hirvonen A, Niskanen L et al (2002) Anthropometry, bioelectrical impedance and dual-energy X-ray absorptiometry in the assessment of body composition in elderly Finnish women. Clin Phys Physiol Meas 22:383–391

    Google Scholar 

  • Hansen RD, Allen BJ (2002) Habitual physical activity, anabolic hormones, and potassium content of fat-free mass in postmenopausal women. Am J Clin Nutr 75:314–320

    PubMed  CAS  Google Scholar 

  • Hughes VA, Roubenoff R, Wood M et al (2004) Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr 80:475–482

    PubMed  CAS  Google Scholar 

  • Ishida Y, Kanehisa H, Carroll JF et al (1997) Distribution of subcutaneous fat and muscle thicknesses in young and middle-aged women. Am J Human Biol 9:247–255

    Article  Google Scholar 

  • Ishiguro N, Kanehisa H, Miyatani M et al (2005) A comparison of three bioelectrical impedance analyses for predicting lean body mass in a population with a large difference in muscularity. Eur J Appl Physiol 94:25–35

    Article  PubMed  Google Scholar 

  • Ishiguro N, Kanehisa H, Miyatani M et al (2006) Applicability of segmental bioelectrical impedance analysis for predicting trunk skeletal muscle volume. J Appl Physiol 100:572–578

    Article  PubMed  Google Scholar 

  • Janssen I, Heymsfield SB, Baumgartner RN et al (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89:465–471

    PubMed  CAS  Google Scholar 

  • Kanazawa M, Yoshiike N, Osaka T et al (2002) Criteria and classification of obesity in Japan and Asia-Oceania. Asia Pacific J Clin Nutr 11:S732–S737

    Article  Google Scholar 

  • Kushner RF, Gudivaka R, Schoeller DA (1996) Clinical characteristics influencing bioelectrical impedance analysis measurements. Am J Clin Nutr 64:423S–427S

    PubMed  CAS  Google Scholar 

  • Kyle UG, Genton L, Karsegard L et al (2001) Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 17:248–253

    Article  PubMed  CAS  Google Scholar 

  • Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr 23:1226–1243

    Article  PubMed  Google Scholar 

  • Levine JA, Lanningham-Foster LM, McCrady SK et al (2005) Interindividual variation in posture allocation: possible role in human obesity. Science 307:584–586

    Article  PubMed  CAS  Google Scholar 

  • Lukaski HC (1993) Comparison of proximal and distal placements of electrodes to assess human body composition by bioelectrical impedance. Basic Life Sci 60:39–43

    PubMed  CAS  Google Scholar 

  • Meng XL, Rosenthal R, Rubin DB (1992) Comparing correlated correlation-coefficients. Psychol Bull 111:172–175

    Article  Google Scholar 

  • Mitsui T, Shimaoka K, Tsuzuku S et al (2006) Accuracy of body fat assessment by bioelectrical impedance in Japanese middle-aged and older people. J Nutr Sci Vitaminol 52:154–156

    Article  PubMed  CAS  Google Scholar 

  • Miyatani M, Kanehisa H, Fukunaga T (2000) Validity of bioelectrical impedance and ultrasonographic methods for estimating the muscle volume of the upper arm. Eur J Appl Physiol 82:391–396

    Article  PubMed  CAS  Google Scholar 

  • Miyatani M, Kanehisa H, Masuo Y et al (2001) Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol 91:386–394

    PubMed  CAS  Google Scholar 

  • Nakamura H, Fukushima H, Miwa Y et al (2006) A longitudinal study on the nutritional state of elderly women at a nursing home in Japan. Intern Med 45:1113–1120

    Article  PubMed  Google Scholar 

  • Neovius M, Hemmingsson E, Freyschuss B et al (2006) Bioelectrical impedance underestimates total and truncal fatness in abdominally obese women. Obesity 14:1731–1738

    Article  PubMed  Google Scholar 

  • Organ LW, Bradham GB, Gore DT et al (1994) Segmental bioelectrical-impedance analysis—theory and application of a new technique. J Appl Physiol 77:98–112

    PubMed  CAS  Google Scholar 

  • Pateyjohns IR, Brinkworth GD, Buckley JD et al (2006) Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity 14:2064–2070

    Article  PubMed  Google Scholar 

  • Racette SB, Schoeller DA, Luke AH et al (1994) Relative dilution spaces of 2H- and 18O-labeled water in humans. Am J Physiol Endocrinol Metab 267:E585–E590

    CAS  Google Scholar 

  • Reddy GN, Saha S (1984) Electrical and dielectric properties of wet bone as a function of frequency. IEEE Trans Biomed Eng 31:296–303

    Article  PubMed  CAS  Google Scholar 

  • Ritz P (2001) Chronic cellular dehydration in the aged patient. J Gerontol A Biol Sci Med Sci 56:M349–M352

    PubMed  CAS  Google Scholar 

  • Ruhl CE, Harris TB, Ding J et al (2007) Body mass index and serum leptin concentration independently estimate percentage body fat in older adults. Am J Clin Nutr 85:1121–1126

    PubMed  CAS  Google Scholar 

  • Scheltinga MR, Jacobs DO, Kimbrough TD et al (1992) Identifying body-fluid distribution by measuring electrical-impedance. J Trauma 33:665–670

    Article  PubMed  CAS  Google Scholar 

  • Schoeller DA, van Santen E, Peterson DW et al (1980) Total body water measurement in humans with 18O and 2H labeled water. Am J Clin Nutr 33:2686–2693

    PubMed  CAS  Google Scholar 

  • Schwan HP, Kıaz CF (1956) The conductivity ofliving tissues. Ann N Y Acad Sci 65:1007–1013

    Article  Google Scholar 

  • Slinde F, Bark A, Jansson J et al (2003) Bioelectrical impedance variation in healthy subjects during 12 h in the supine position. Clin Nutr 22:153–157

    Article  PubMed  CAS  Google Scholar 

  • Stahn A, Terblanche E, Strobel G (2007) Modeling upper and lower limb muscle volume by bioelectrical impedance analysis. J Appl Physiol 103:1428–1435

    Article  PubMed  Google Scholar 

  • Tanaka NI, Miyatani M, Masuo Y et al (2007) Applicability of a segmental bioelectrical impedance analysis for predicting the whole body skeletal muscle volume. J Appl Physiol 103:1688–1695

    Article  PubMed  Google Scholar 

  • Tsutsui T, Muramatsu N (2007) Japan’s universal long-term care system reform of 2005: containing costs and realizing a vision. J Am Geriatr Soc 55:1458–1463

    Article  PubMed  Google Scholar 

  • van Marken Lichtenbelt WD, Westerterp KR, Wouters L et al (1994) Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. Am J Clin Nutr 60:159–166

    PubMed  Google Scholar 

  • Wannamethee SG, Shaper AG, Whincup PH (2005) Body fat distribution, body composition, and respiratory function in elderly men. Am J Clin Nutr 82:996–1003

    PubMed  CAS  Google Scholar 

  • Yamada Y, Kimura M, Nakamura E et al (2007) Limb muscle mass decrease with aging in Japanese men and women aged 15–97 yr. Jpn J Phys Fit Sports Med (Japanese with English abstract) 56:461–471

    Google Scholar 

  • Yamada Y, Yokoyama K, Noriyasu R et al (2009) Light-intensity activities are important for estimating physical activity energy expenditure using uniaxial and triaxial accelerometers. Eur J Appl Physiol 105:141–152

    Article  PubMed  Google Scholar 

  • Yang X, Telama R, Viikar J et al (2006) Risk of obesity in relation to physical activity tracking from youth to adulthood. Med Sci Sports Exerc 38:919–925

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Prof. Dale A. Schoeller (Nutritional Sciences, University of Wisconsin, Madison) for his helpful discussions and editing of the entire manuscript. The authors also thank all of the individuals who participated in this study. This study was supported by a research grant awarded to MK from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (18300218) and a research fellowship awarded to YY from the Japan Society for the Promotion of Science for Young Scientists (19-1440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Oda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Masuo, Y., Yokoyama, K. et al. Proximal electrode placement improves the estimation of body composition in obese and lean elderly during segmental bioelectrical impedance analysis. Eur J Appl Physiol 107, 135–144 (2009). https://doi.org/10.1007/s00421-009-1106-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1106-6

Keywords

Navigation