Skip to main content
Log in

Light-intensity activities are important for estimating physical activity energy expenditure using uniaxial and triaxial accelerometers

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 26 April 2016

Abstract

This study evaluated the validity of the total energy expenditure (TEE) estimated using uniaxial (ACCuni) and triaxial (ACCtri) accelerometers in the elderly. Thirty-two healthy elderly (64–87 years) participated in this study. TEE was measured using the doubly labeled water (DLW) method (TEEDLW). TEEACCuni (6.79 ± 1.08 MJ day−1) was significantly lower than TEEDLW (7.85 ± 1.54 MJ day−1) and showed wider limits of agreement (−3.15 to 1.12 MJ day−1) with a smaller correlation coefficient (= 0.703). TEEACCtri (7.88 ± 1.27 MJ day−1) did not differ from TEEDLW and showed narrower limits of agreement (−1.64 to 1.72 MJ day−1) with a larger correlation coefficient (r = 0.835, P < 0.001). The estimated intensities of light activities were significantly lower with ACCuni. Greater mediolateral acceleration was observed during 6-min walk tests. The results suggest that ACCtri is a better choice than ACCuni for assessing TEE in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Black AE, Prentice AM, Coward WA (1986) Use of food quotients to predict respiratory quotients for the doubly-labelled water method of measuring energy expenditure. Hum Nutr Clin Nutr 40:381–391

    CAS  PubMed  Google Scholar 

  • Blanc S, Colligan AS, Trabulsi J et al (2002) Influence of delayed isotopic equilibration in urine on the accuracy of the H-2(2) O-18 method in the elderly. J Appl Physiol 92:1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Blanc S, Schoeller DA, Bauer D et al (2004) Energy requirements in the eighth decade of life. Am J Clin Nutr 79:303–310

    CAS  PubMed  Google Scholar 

  • Bland JM, Altman DG (1995) Comparing methods of measurement—why plotting difference against standard method is misleading. Lancet 346:1085–1087. doi:10.1016/S0140-6736(95)91748-9

    Article  CAS  PubMed  Google Scholar 

  • Bonnefoy M, Normand S, Pachiaudi C et al (2001) Simultaneous validation of ten physical activity questionnaires in older men: a doubly labeled water study. J Am Geriatr Soc 49:28–35. doi:10.1046/j.1532-5415.2001.49006.x

    Article  CAS  PubMed  Google Scholar 

  • Bouten CV, Westerterp KR, Verduin M et al (1994) Assessment of energy-expenditure for physical-activity using a triaxial accelerometer. Med Sci Sports Exerc 26:1516–1523. doi:10.1249/00005768-199412000-00016

    Article  CAS  PubMed  Google Scholar 

  • Bouten CVC, VerboeketVandeVenne W, Westerterp KR et al (1996) Daily physical activity assessment: comparison between movement registration and doubly labeled water. J Appl Physiol 81:1019–1026

    CAS  PubMed  Google Scholar 

  • Brage S, Ekelund U, Brage N et al (2007) Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. J Appl Physiol 103:682–692. doi:10.1152/japplphysiol.00092.2006

    Article  PubMed  Google Scholar 

  • Chen KY, Sun M (1997) Improving energy expenditure estimation by using a triaxial accelerometer. J Appl Physiol 83:2112–2122

    CAS  PubMed  Google Scholar 

  • Coward WA (1990) Calculation of pool sizes and flux rates. In: Prentice AM (ed) The doubly-labelled water method for the measurement of energy expenditure. International Atomic Energy Agency, Vienna, pp 48–65

    Google Scholar 

  • Crouter SE, Churilla JR, Bassett DR Jr (2006a) Estimating energy expenditure using accelerometers. Eur J Appl Physiol 98:601–612. doi:10.1007/s00421-006-0307-5

    Article  PubMed  Google Scholar 

  • Crouter SE, Clowers KG, Bassett DR Jr (2006b) A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 100:1324–1331. doi:10.1152/japplphysiol.00818.2005

    Article  PubMed  Google Scholar 

  • Davis MG, Fox KR (2007) Physical activity patterns assessed by accelerometry in older people. Eur J Appl Physiol 100:581–589. doi:10.1007/s00421-006-0320-8

    Article  PubMed  Google Scholar 

  • Dean JC, Alexander NB, Kuo AD (2007) The effect of lateral stabilization on walking in young and old adults. IEEE Trans Biomed Eng (in press)

  • Donelan JM, Shipman DW, Kram R et al (2004) Mechanical and metabolic requirements for active lateral stabilization in human walking. J Biomech 37:827–835. doi:10.1016/j.jbiomech.2003.06.002

    Article  PubMed  Google Scholar 

  • Ekelund U, Aman J, Westerterp K (2003) Is the ArteACC index a valid indicator of free-living physical activity in adolescents? Obes Res 11:793–801. doi:10.1038/oby.2003.110

    Article  PubMed  Google Scholar 

  • Eston RG, Rowlands AV, Ingledew DK (1998) Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J Appl Physiol 84:362–371

    CAS  PubMed  Google Scholar 

  • Fox KR, Stathi A, McKenna J et al (2007) Physical activity and mental well-being in older people participating in the better ageing project. Eur J Appl Physiol 100:591–602. doi:10.1007/s00421-007-0392-0

    Article  PubMed  Google Scholar 

  • Hara T, Matsumura Y, Yamamoto M et al (2006) The relationship between body weight reduction and intensity of daily physical activities assessed with 3-dimension accelerometer. Jpn J Phys Fit Sports Med 55:385–391

    Article  Google Scholar 

  • Harris AM, Lanningham-Foster LM, McCrady SK et al (2007) Nonexercise movement in elderly compared with young people. Am J Physiol Endocrinol Metab 292:E1207–E1212. doi:10.1152/ajpendo.00509.2006

    Article  CAS  PubMed  Google Scholar 

  • Health Promotion and Nutrition Division-Health Service Bureau Ministry of Health and Welfare (1995) Recommended dietary allowances for the Japanese, 4th revision, Dai-ichi Shuppan, Tokyo

  • Ishiguro N, Kanehisa H, Miyatani M et al (2006) Applicability of segmental bioelectrical impedance analysis for predicting trunk skeletal muscle volume. J Appl Physiol 100:572–578. doi:10.1152/japplphysiol.00094.2005

    Article  PubMed  Google Scholar 

  • Ishikawa-Takata K, Tabata I, Sasaki S et al (2007) Physical activity level in healthy free-living Japanese estimated by doubly labelled water method and International Physical Activity Questionnaire. Eur J Clin Nutr. Epub ahead of print. doi:10.1038/sj.ejcn.1602805

  • Iwashita S, Takeno Y, Okazaki K et al (2003) Triaxial accelerometry to evaluate walking efficiency in older subjects. Med Sci Sports Exerc 35:1766–1772. doi:10.1249/01.MSS.0000089350.54959.CB

    Article  PubMed  Google Scholar 

  • Judge JO, Ounpuu S, Davis RB (1996) Effects of age on the biomechanics and physiology of gait. Clin Geriatr Med 12:659–671

    CAS  PubMed  Google Scholar 

  • Koebnick C, Wagner K, Thielecke F et al (2005) Validation of a simplified physical activity record by doubly labeled water technique. Int J Obes 29:302–309. doi:10.1038/sj.ijo.0802882

    Article  CAS  Google Scholar 

  • Kumahara H, Schutz Y, Ayabe M et al (2004a) The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Br J Nutr 91:235–243. doi:10.1079/BJN20031033

    Article  CAS  PubMed  Google Scholar 

  • Kumahara H, Tanaka H, Terrier P et al (2004b) Comparison of 2 accelerometers for assessing daily energy expenditure in adults. J Phys Act Health 1:270–280

    Article  Google Scholar 

  • Mahabir S, Baer DJ, Giffen C et al (2006) Comparison of energy expenditure estimates from 4 physical activity questionnaires with doubly labeled water estimates in postmenopausal women. Am J Clin Nutr 84:230–236

    CAS  PubMed  Google Scholar 

  • Manini TM, Everhart JE, Patel KV et al (2006) Daily activity energy expenditure and mortality among older adults. JAMA 296:171–179. doi:10.1001/jama.296.2.171

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Yamamoto M, Kitado T et al (2008) High-accuracy physical activity monitor utilizing three-axis accelerometer. Natl Tech Rep 56:60–66

    Google Scholar 

  • Meijer EP, Goris AHC, Wouters L et al (2001) Physical inactivity as a determinant of the physical activity level in the elderly. Int J Obes 25:935–939. doi:10.1038/sj.ijo.0801644

    Article  CAS  Google Scholar 

  • Meng XL, Rosenthal R, Rubin DB (1992) Comparing correlated correlation-coefficients. Psychol Bull 111:172–175. doi:10.1037/0033-2909.111.1.172

    Article  Google Scholar 

  • Meydani M (2001) Nutrition interventions in aging and age-associated disease. In: Healthy aging for functional longevity, pp 226–235

  • Mian OS, Thom JM, Ardigo LP et al (2006) Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol (Oxf) 186:127–139. doi:10.1111/j.1748-1716.2006.01522.x

    Article  CAS  Google Scholar 

  • Miyatani M, Kanehisa H, Masuo Y et al (2001) Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol 91:386–394

    CAS  PubMed  Google Scholar 

  • Morio B, Ritz P, Verdier E et al (1997) Critical evaluation of the factorial and heart-rate recording methods for the determination of energy expenditure of free-living elderly people. Br J Nutr 78:709–722. doi:10.1079/BJN19970189

    Article  CAS  PubMed  Google Scholar 

  • Murray MP, Kory RC, Clarkson BH (1969) Walking patterns in healthy old men. J Gerontol 24:169–178

    Article  CAS  PubMed  Google Scholar 

  • Nichols JF, Patterson P, Early T (1992) A validation of a physical-activity monitor for young and older adults. Can J Sport Sci 17:299–303

    CAS  PubMed  Google Scholar 

  • Ortega JD, Farley CT (2007) Individual limb work does not explain the greater metabolic cost of walking in elderly adults. J Appl Physiol 102:2266–2273. doi:10.1152/japplphysiol.00583.2006

    Article  PubMed  Google Scholar 

  • Plasqui G, Westerterp KR (2007) Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity (Silver Spring) 15:2371–2379. doi:10.1038/oby.2007.281

    Article  Google Scholar 

  • Plasqui G, Joosen A, Kester AD et al (2005) Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obes Res 13:1363–1369. doi:10.1038/oby.2005.165

    Article  PubMed  Google Scholar 

  • Racette SB, Schoeller DA, Luke AH et al (1994) Relative dilution spaces of 2H- and 18O-labeled water in humans. Am J Physiol Endocrinol Metab 267:E585–E590

    CAS  Google Scholar 

  • Rafamantanantsoa HH, Ebine N, Yoshioka M et al (2002) Validation of three alternative methods to measure total energy expenditure against the doubly labeled water method for older Japanese men. J Nutr Sci Vitaminol (Tokyo) 48:517–523

    Article  Google Scholar 

  • Rothenberg E, Bosaeus I, Lernfelt B et al (1998) Energy intake and expenditure: validation of a diet history by heart rate monitoring, activity diary and doubly labeled water. Eur J Clin Nutr 52:832–838. doi:10.1038/sj.ejcn.1600655

    Article  CAS  PubMed  Google Scholar 

  • Rothney MP, Neumann M, Beziat A et al (2007) An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J Appl Physiol 103:1419–1427. doi:10.1152/japplphysiol.00429.2007

    Article  PubMed  Google Scholar 

  • Saito N, Yamamoto T, Sugiura Y et al (2004) Lifecorder: a new device for the long-term monitoring of motor activities for Parkinson’s disease. Intern Med 43:685–692. doi:10.2169/internalmedicine.43.685

    Article  PubMed  Google Scholar 

  • Schoeller DA, Ravussin E, Schutz Y et al (1986) Energy expenditure by doubly labeled water: validation in humans and proposed calculation. Am J Physiol Regul Integr Comp Physiol 250:R823–R830

    CAS  Google Scholar 

  • Seale JL, Klein G, Friedmann J et al (2002) Energy expenditure measured by doubly labeled water, activity recall, and diet records in the rural elderly. Nutrition 18:568–573. doi:10.1016/S0899-9007(02)00804-3

    Article  PubMed  Google Scholar 

  • St-Onge M, Mignault D, Allison DB et al (2007) Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am J Clin Nutr 85:742–749

    CAS  PubMed  Google Scholar 

  • Starling RD, Matthews DE, Ades PA et al (1999) Assessment of physical activity in older individuals: a doubly labeled water study. J Appl Physiol 86:2090–2096

    CAS  PubMed  Google Scholar 

  • Tanaka C, Tanaka S, Kawahara J et al (2007a) Triaxial accelerometry for assessment of physical activity in young children. Obesity (Silver Spring) 15:1233–1241. doi:10.1038/oby.2007.145

    Article  Google Scholar 

  • Tanaka NI, Miyatani M, Masuo Y et al (2007b) Applicability of a segmental bioelectrical impedance analysis for predicting the whole body skeletal muscle volume. J Appl Physiol 103:1688–1695

    Article  PubMed  Google Scholar 

  • Touno M, Hasina RH, Ebine N et al (2003) Measurement of total energy expenditure in Japanese firefighters under normal working condition using the doubly labeled water method. Jpn J Phys Fit Sports Med 52:265–274

    Article  Google Scholar 

  • Trost SG, Way R, Okely AD (2006) Predictive validity of three ActiGraph energy expenditure equations for children. Med Sci Sports Exerc 38:380–387. doi:10.1249/01.mss.0000183848.25845.e0

    Article  PubMed  Google Scholar 

  • Turley KR, McBride PJ, Wilmore JH (1993) Resting metabolic rate measured after subjects spent the night at home vs at a clinic. Am J Clin Nutr 58:141–144

    CAS  PubMed  Google Scholar 

  • United Nations Department of Economic and Social Affairs-Population Division (2007) World population ageing 2007. United Nations publication, New York

  • Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Westerterp KR (1999) Physical activity assessment with accelerometers. Int J Obes 23:S45–S49. doi:10.1038/sj.ijo.0800883

    Article  Google Scholar 

  • Wong TC, Webster JG, Montoye HJ et al (1981) Portable accelerometer device for measuring human energy-expenditure. IEEE Trans Biomed Eng 28:467–471. doi:10.1109/TBME.1981.324820

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dale A. Schoeller (Nutritional Sciences, University of Wisconsin, Madison) for helpful discussions and editing the entire manuscript. The authors also thank the individuals who participated in this study. This study was supported by a research grant to MK from the Ministry of Education, Culture, Sports, Science and Technology, Japan (18300218) and a research grant to YY as part of a research fellowship of the Japan Society for the Promotion of Science for Young Scientists (19-1440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Oda.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00421-016-3376-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Yokoyama, K., Noriyasu, R. et al. Light-intensity activities are important for estimating physical activity energy expenditure using uniaxial and triaxial accelerometers. Eur J Appl Physiol 105, 141–152 (2009). https://doi.org/10.1007/s00421-008-0883-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0883-7

Keywords

Navigation