Skip to main content
Log in

Normo or hypobaric hypoxic tests: propositions for the determination of the individual susceptibility to altitude illnesses

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Assessment of individual susceptibility to altitude illnesses and more particularly to acute mountain sickness (AMS) by means of tests performed in normobaric hypoxia (NH) or in hypobaric hypoxia (HH) is still debated. Eighteen subjects were submitted to HH and NH tests (PIO2=120 hPa, 30 min) before an expedition. Maximal and mean acute mountain sickness scores (AMSmax and mean) were determined using the self-report Lake Louise questionnaire scored daily. Cardio-ventilatory (f, VT, PetO2 and PetCO2, HR and finger pulse oxymetry SpO2) were measured at times 5 and 30 min of the tests. Arterial (PaO2, PaCO2, pH, SaO2) and capillary haemoglobin (Hb) measurements were performed at times 30 min. Hypoxic ventilatory (HVR) and cardiac (HCR) responses, peripheral O2 blood content (CpO2) were calculated. A significant time effect is found for ΔSpO2 (P = 0.04). Lower PaCO2 (P = 0.005), SaO2 (P = 0.07) and higher pH (P = 0.02) are observed in HH compared to NH. AMSmax varied from 3 to12 and AMSmean between 0.6 and 3.5. In NH at 30 min, AMSmax is related to PetO2 (R = 0.61, P = 0.03), CpO2 (R = −0.53, P = 0.02) and in HH to CpO2 (R = −0.57, P = 0.01). In NH, AMSmean is related to Δf (R = 0.46, P = 0.05), HCR (R = 0.49, P = 0.04), CpO2 (R = −0.51, P = 0.03) and, in HH at 30 min, to VT (R = 0.69, P = 0.01) and a tendency for CpO2 (R = −0.43, P = 0.07). We conclude that HH and NH tests are physiologically different and they must last 30 min. CpO2 is an important variable to predict AMS. For practical considerations, NH test is proposed to quantify AMS individual susceptibility using the formulas: AMSmax = 9.47 + 0.104PetO2(hPa)–0.68CpO2 (%), (R = 0.77, P = 0.001); and AMSmean = 3.91 + 0.059Δf + 0.438HCR–0.135CpO2 (R = 0.71, P = 0.017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bärtsch P, Swenson ER, Paul A, Jülg B, Hohenhaus E (2002) Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness. High Alt Med Biol 3(4):361–376

    Article  PubMed  Google Scholar 

  • Bärtsch P, Bailey DM, Berger MM, Knauth M, Baumgartner RW (2004) Acute mountain sickness: controversies and advances. High Alt Med Biol 5(2):110–124

    Article  PubMed  Google Scholar 

  • Du Bois D, Du Bois EF (1916) Clinical calorimetry. Tenth paper: a formula to estimate the approximate area if height and weight be known. Arch Intern Med 17:863–871

    CAS  Google Scholar 

  • Ge RL, Matsuzawa Y, Takeoka M, Kubo K, Sekiguchi M, Kobayashi T (1997) Low pulmonary diffusing capacity in subjects with acute mountain sickness. Chest 111(1):58–64

    PubMed  CAS  Google Scholar 

  • Hackett PH (1999) The cerebral etiology of high-altitude cerebral edema and acute mountain sickness. Wilderness Environ Med 10(2):97–109

    PubMed  CAS  Google Scholar 

  • Hackett PH, Rennie D, Hofmeister SE, Grover RF, Grover EB, Reeves JT (1982) Fluid retention and relative hypoventilation in acute mountain sickness. Respiration 43(5):321–329

    PubMed  CAS  Google Scholar 

  • Hirata K, Matsuyama S, Saito A (1989) Obesity as a risk factor for acute mountain sickness. Lancet 2(8670):1040–1041

    Article  PubMed  CAS  Google Scholar 

  • Hohenhaus E, Paul A, McCullough RE, Kücherer H, and Bärtsch P (1995) Ventilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema. Eur Respir J 8(11):1825–1833

    Article  PubMed  CAS  Google Scholar 

  • Hu ST, Huang WY, Chu SC, Pa CF (1982) Chemoreflexive ventilatory response at sea level in subjects with past history of good acclimatization and severe acute mountain sickness. In: Brendel W, Zink RA (eds) High altitude physiology and medecine. Springer, New York, pp 28–32

  • Hyers TM, Scoggin CH, Will DH, Grover RF, Reeves JT (1979) Accentuated hypoxemia at high altitude in subjects susceptible to high-altitude pulmonary edema. J Appl Physiol 46(1):41–46

    PubMed  CAS  Google Scholar 

  • Kayser B (1991) Acute mountain sickness in western tourists around the Thorong pass (5400 m) in Nepal. J Wilderness Med 2:110–117

    Google Scholar 

  • King AB, Robinson SM (1972) Ventilation response to hypoxia and acute mountain sickness. Aerosp Med 43(4):419–421

    PubMed  CAS  Google Scholar 

  • Lanfranchi PA, Colombo R, Cremona G, Baderna P, Spagnolatti L, Mazzuero G, Wagner P, Perini L, Wagner P, Perini L, Wagner H, Cavallaro C, Giannuzzi P (2005) Autonomic cardiovascular regulation in subjects with acute mountain sickness. Am J Physiol Heart Circ Physiol 289(6):H2364–H2372

    Article  PubMed  CAS  Google Scholar 

  • Loeppky JA, Icenogle MV, Maes D, Riboni K, Hinghofer-Szalkay H, Roach RC (2005) Early fluid retention and severe acute mountain sickness. J Appl Physiol 98(2):591–597

    Article  PubMed  Google Scholar 

  • Lohman TG, Boileau RA, Massey BH (1975) Prediction of lean body mass in young boys from skinfold thickness and body weight. Hum Biol 45:245–262

    Google Scholar 

  • Mathew L, Gopinathan PM, Purkayastha SS, Sen Gupta JS, Nayar HS (1983) Chemoreceptor sensitivity and mal adaptation to high altitude in man. Eur J Physiol 51(1):137–144

    Article  CAS  Google Scholar 

  • Milledge JS, Thomas PS, Beeley JM, English JSC (1988) Hypoxic ventilatory response and acute mountain sickness. Eur Respir J 1(10):948–951

    PubMed  CAS  Google Scholar 

  • Milledge JS, Beeley JM, Broome J, Luff N, Pelling M, Smith D (1991) Acute mountain sickness susceptibility, fitness, and hypoxic ventilatory response. Eur Respir J 4(8):1000–1003

    PubMed  CAS  Google Scholar 

  • Moore LG, Harisson GL, McCullough RE, McCullough RG, Micco AJ, Tucker A, Weil JV, Reeves JT (1986) Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness. J Appl Physiol 60(4):1407–1412

    PubMed  CAS  Google Scholar 

  • Rathat C, Richalet JP, Herry JP, Larmignat P (1992) Detection of high-risk subjects for high altitude diseases. Int J Sports Med 13(Suppl 1):S76–S78

    PubMed  Google Scholar 

  • Richalet JP, Keromes A, Dersch B, Corrizi F, Medhioui H, Pophillat B, Chardonnet H, Tassery F, Herry JP, Rathat C, Chaduteau C, Darnaud B (1988) Caractéristiques physiologiques des alpinistes de haute altitude. Sci Sport 3:89–108

    Article  Google Scholar 

  • Roach RC, Bärtsch P, Hackett PH, Oelz O (1993) The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Coates G, Houston C (eds) Hypoxia and molecular medicine, Lake Louise, Alberta, Canada. Queen City Printers, Burlington, pp 272–274

    Google Scholar 

  • Roach RC, Loeppky JA, Icenogle MV (1996) Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia. J Appl Physiol 81(5):1908–1910

    PubMed  CAS  Google Scholar 

  • Robinson SM, King AB, Aoki V (1971) Acute mountain sickness: reproducibility of its severity and duration in an individual. Aerosp Med 42:706–708

    PubMed  CAS  Google Scholar 

  • Savourey G, Moirant C, Eterradossi J, Bittel J (1995a) Acute mountain sickness relates to sea-level partial pressure of oxygen. Eur J Appl Physiol 70(6):469–476

    Article  CAS  Google Scholar 

  • Savourey G, Guinet A, Besnard Y, Garcia N, Hanniquet AM, Bittel J (1995b) Evaluation of the Lake Louise acute mountain sickness scoring system in a hypobaric chamber. Aviat Space Environ Med 66(10):963–967

    PubMed  CAS  Google Scholar 

  • Savourey G, Guinet A, Besnard Y, Garcia N, Hanniquet AM, Bittel J (1997) Are the laboratory and field conditions observations of acute mountain sickness related? Evaluation of the Lake Louise acute mountain sickness scoring system in a hypobaric chamber. Aviat Space Environ Med 68(10):895–899

    PubMed  CAS  Google Scholar 

  • Savourey G, Launay JC, Besnard Y, Guinet A, Travers S (2003) Normo- and hypobaric hypoxia : are there any physiological differences? Eur J Appl Physiol 89(2):122–126

    PubMed  Google Scholar 

  • Singh I, Khanna PK, Srivastava MC, Lal M, Roy SB, Subramanyam CS (1969) Acute mountain sickness. N Engl J Med 280(4):175–184

    Article  PubMed  CAS  Google Scholar 

  • Sutton JR, Bryan AC, Gray GW, Horton ES, Rebuck AS, Woodley W, Rennie ID, Houston CS (1976) Pulmonary gas exchange in acute mountain sickness. Aviat Space Environ Med 47(10):1032–1037

    PubMed  CAS  Google Scholar 

  • Viswanathan R, Subramanian S, Lodi ST, Radha TG (1978) Further studies of pulmonary oedema of high altitude. Abnormal responses to hypoxia of men who had developed pulmonary oedema at high altitude. Respiration 36(4):216–222

    Article  PubMed  CAS  Google Scholar 

  • Ward P, Milledge JS, West JB (2000) Acute mountain sickness. In: High altitude medicine and physiology. Arnold Edts, London, pp 215–231

Download references

Acknowledgments

The contributions of subjects, especially the subjects of the Mountain Club of the ESSA LYON-BRON (Peru expedition) and the subjects participating in the expedition to Mera Peak, are acknowledged as well as the technical assistance of L. Vachez-Collomb, N. Piccarreta, J. Denis, N. Clerc and V. Leroux. We particularly thank Dr. P. Arvers for his important contribution for the revision of the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustave Savourey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savourey, G., Launay, JC., Besnard, Y. et al. Normo or hypobaric hypoxic tests: propositions for the determination of the individual susceptibility to altitude illnesses. Eur J Appl Physiol 100, 193–205 (2007). https://doi.org/10.1007/s00421-007-0417-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0417-8

Keywords

Navigation