Skip to main content
Log in

Haemolysis caused by alterations of α- and β-spectrin after 10 to 35 min of severe exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The pathophysiology of exercise related haemolysis is not thoroughly understood. We investigated whether exercise related haemolysis (1) is associated with alterations of red blood cell (RBC) membrane proteins similar to those found in inherited anaemic diseases, (2) can be induced with a non-running exercise mode, (3) is related to exercise intensity, and (4) coincides with indicators of oxidative stress. In ten triathletes [median (P25/P75-percentiles) age: 28.0 (26.3/28.5) years, height: 1.84 (1.78/1.87) m, body mass: 78.5 (74.8/80.8) kg, maximal oxygen uptake: 60.0 (57.3/64.8) ml kg−1 min−1], haptoglobin, α- and β-spectrin bands, malondialdehyde (MDA) and H2O2-induced chemiluminescence (H2O2-Chem) were determined immediately pre- and post-both, a 35 min low intensity and a high intensity cycling exercise [240 (218/253) vs 290 (270/300) W, P<0.05) requiring similar amounts of metabolic energy [28.3 (25.9/29.9) vs 24.9 (18.4/30.5) kJ kg−1, P>0.05]. At high exercise intensity haptoglobin [1.10 (0.81/2.53) vs 1.01 (0.75/2.00) g l−1] decreased (P<0.05) whilst MDA [2.80 (2.65/3.20) vs 3.13 (2.78/3.31) nmol ml−1] and H2O2-Chem [29.70 (22.55/37.10) vs 37.25 (35.20/52.63) rel. U min] increased (P<0.05), coinciding with the disappearance of the spectrin bands in six out of ten gels. No corresponding changes were found at low intensity exercise. Ten to 35 min of non-running exercise in a regularly used intensity domain causes intra-vascular haemolysis associated with alterations in the RBC membrane proteins similar to those found after in vitro oxidative stress and in inherited anaemic diseases like Sphaerocytosis and Fanconi’s anaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agre P, Orringer EP, Bennet V (1982) Deficient red-cell spectrin in severe, recessively inherited spherocytosis. N Engl J Med 306:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Beneke R (1995) Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc 27(6):863–867

    PubMed  CAS  Google Scholar 

  • Beneke R (2003a) Maximal lactate steady state concentration (MLSS): experimental and modelling approaches. Eur J Appl Physiol 88:361–369

    Article  PubMed  CAS  Google Scholar 

  • Beneke R (2003b) Methodological aspects of maximal lactate steady state – implications for performance testing. Eur J Appl Physiol 89:95–99

    Article  PubMed  CAS  Google Scholar 

  • Beneke R (2003c) Experiment and computer aided simulation – complementary tools to understand exercise metabolism. Biochem Soc Trans 31(6):1263–1266

    PubMed  CAS  Google Scholar 

  • Beneke R, di Prampero PE (2001) Mechanische und metabolische Belastung beim Radfahren – eine Analyse aus physiologischer und biomechanischer Sicht. Dtsch Z Sportmed 51(1):29–33

    Google Scholar 

  • Beneke R, Meyer K (1997) Walking performance in and economy in chronic heart failure patients pre and post exercise training. Eur J Appl Physiol 75:246–251

    Article  CAS  Google Scholar 

  • Beneke R, von Duvillard SP (1996) Determination of maximal lactate steady-state response in selected sports events. Med Sci Sports Exerc 28(2):241–246

    PubMed  CAS  Google Scholar 

  • Besso F (2000) Fanconi anaemia. Nippon Rinsho 58(7):1467–1472

    Google Scholar 

  • Bichis M, Huber AR (2000) Hereditary diseases of erythrocyte membrane: from clinical aspects to underlying genetical and molecular mechanisms. Ann Biol Clin (Paris) 58(3):277–289

    CAS  Google Scholar 

  • Burke LM, Read RSD (1987) Diet patterns of elite Australian male triathletes. Phys Sportsmed 15(2):140–155

    Google Scholar 

  • Colt E, Heyman B (1984) Low ferritin levels in runners. J Sports Med Phys Fitness 24:13–17

    PubMed  CAS  Google Scholar 

  • Cooper CE, Vollaard NBJ, Choueiri T, Wilson MT (2002) Exercise, free radicals and oxidative stress. Biochem Soc Trans 30(2):280–285

    Article  PubMed  CAS  Google Scholar 

  • Davidson RJ (1964) Exertional haemoglobinuria: a report on three cases with studies on the haemolytic mechanism. J Clin Path 17:536–540

    Article  PubMed  CAS  Google Scholar 

  • Di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72

    PubMed  CAS  Google Scholar 

  • Dufaux B, Hoederath A, Streitberger I, Hollmann W, Assmann G (1981) Serum ferritin, transferrin, haptoglobin and iron in middle and long distance runners, elite rowers, and professional racing cyclists. Int J Sports Med 2:43–46

    PubMed  CAS  Google Scholar 

  • Eber SW (1991) Disorders of the membrane skeleton of erythrocytes in hereditary spherocytosis and elliptocytosis: significance of the molecular defect for pathogenesis and clinical severity. Klin Padiatr 203(4):284–295

    Article  PubMed  CAS  Google Scholar 

  • Ernst E, Sturmvoll M, Magyarosy I (1988) “Sportanämie” – Wohin verschwinden die Erythrozyten? Dtsch Z Sportmed 39:476–480

    Google Scholar 

  • Falsetti JL, Burke ER, Feld RD, Frederick EC, Ratering C (1983) Hematological variations after endurance running with hard soled and air cushioned shoes. Phys Sports Med 11:118–127

    Google Scholar 

  • Fleischer R (1881) Über eine neue Form von Hämoglobinurie beim Menschen. Berl Klin Wschr 18:691–695

    Google Scholar 

  • Föhrenbach R (1991) Leistungsdiagnostik, Trainingsanalyse und –steuerung bei Läuferinnen und Läufern verschiedener Laufdisziplinen. Hartung-Gorre Verlag, Konstanz

    Google Scholar 

  • Galea GA, Davidson RJ (1983) Haematological and haemorheological changes in marathon runners. Clin Hemorheol 3:320

    Google Scholar 

  • Gehrmann G (1966) Mechanische Hämolysen. Dtsch Med Wschr 91:1846–1850

    Article  PubMed  CAS  Google Scholar 

  • Gilligan DR, Altschulte MD, Katersky EM (1943) Physiological intravascular hemolysis of exercise, hemoglobinuria following cross-country runs. J Clin Invest 22:859–869

    PubMed  CAS  Google Scholar 

  • Guiliani AL, Bigoni B, Veronesi M, Manservigi R, Mischiati C, Berti G, Zavagli G, Ricci G (1999) Membrane protein pattern in hereditary spherocytosis in five subjects from north-east Italy obtained by SDS-PAGE using N’N’-diallyltartardiamide. Eur J Haematol 63(5):302–305

    Article  Google Scholar 

  • Hartmann U, Mader A, Petersmann G, Grabow V, Hollmann W (1989) Verhalten von Herzfrequenz und Laktat während ruderspezifischer Trainingsmethoden. Dtsch Z Sportmed 40(6):200–212

    Google Scholar 

  • Hornbostel H, Kaufmann W, Siegenthaler W (1975) Pathophysiologie und Diagnostik hämolytischer Anämien. Dtsch Med Wschr 100:1400–1402

    Google Scholar 

  • Hunding A, Jordal R, Paulev PE (1981) Runner’s anemia and iron deficiency. Acta Med Scand 209:315–318

    Article  PubMed  CAS  Google Scholar 

  • Jordan J, Kiernan W, Merker HJ, Wenzel M, Beneke R (1998) Red cell membrane skeletal changes in marathon runners. Int J Sports Med 18:1–4

    Google Scholar 

  • Kanzaki A, Wada H, Yawata Y (1991) Cytoskeleton anomalies in disorders of red cell membrane proteins. Rinsho Ketsueki 32(6):573–579

    PubMed  CAS  Google Scholar 

  • Mathur R, Chowdhury MR, Sigh G (2000) Recent advances in chromosome breakage syndromes and their diagnosis. Indian Pediatr 37(6):615–625

    PubMed  CAS  Google Scholar 

  • Miller BJ (1990) Haematological effects of running: a brief review. Sports Med 9:1–6

    Article  PubMed  CAS  Google Scholar 

  • Poortmans JR, Haralambie G (1979) Biochemical changes in a 100 km run: proteins in serum and urine. Eur J Appl Physiol 40:245–254

    Article  CAS  Google Scholar 

  • Popov I, Lewin G, Gäbel W, von Baehr R (1989) Local and systemic effects of organ hypoxia detected by chemiluminescence and photochemiluminescence. Biomed Biochem Acta 49:297–300

    Google Scholar 

  • Popov I, Volker H, Lewin G (2001) Photochemiluminescenct detection of antiradical activity. V. Application in combination with the hydrogen peroxide-initiated chemiluminescence of blood plasma proteins to evaluate antioxidant homeostasis in humans. Redox Rep 6(1):43–48

    Article  PubMed  CAS  Google Scholar 

  • Resina AL, Gatteschi Giamberardino MA, Rubenni MG, Trabassi E, Troni MG (1988) Comparison of RBC indices and serum iron parameters in trained runners and control subjects. Haematologica 73:449–454

    PubMed  CAS  Google Scholar 

  • Röcker L, Laniado M, Kirsch K (1983) The effect of physical exercise on plasma volume and red blood cell mass. In: Dunn CDR (ed) Current concepts in Erythropoesis. Wiley, Chichester, pp 245–277

    Google Scholar 

  • Schimke I, Papies B (1986) Einige methodische Aspekte der Bestimmung Thiobarbitursäureaktiver Substanzen im Plasma. Z Med Lab Diag 27:71–76

    CAS  Google Scholar 

  • Selby GB, Eichner ER (1986) Endurance swimming, intravascular hemolysis, anaemia and iron depletion. Am J Med 81:791–794

    Article  PubMed  CAS  Google Scholar 

  • Siegel AJ, Hennekens CH, Solomon HS, Van Boeckel B (1979) Exercise-related hematuria. JAMA 241(4):391–392

    Article  PubMed  CAS  Google Scholar 

  • Smith JA, Kolbuch-Braddon M, Gillam I, Telford RD, Weidemann MJ (1995) Changes in the susceptibility of red blood cells to oxidative and osmotic stress following submaximal exercise. Eur J Appl Physiol 70:427–436

    Article  CAS  Google Scholar 

  • Snyder LM, Leb L, Piotrowsky J, Sauberman N, Liu SC, Fortier NL (1983) Irreversible spectrin-haemoglobin cross linking in vivo: a marker for red cell senescence. Br J Haematol 53:379–384

    PubMed  CAS  Google Scholar 

  • Straface E, Masella R, Principe DD, Franceschi C, Korkina LG, Zatterale A, Pagano G, Malorni W (2000) Spectrin changes occur in erythrocytes from patients with Fanconi’s anemia and their parents. Biochem Biophys Res Commun 273(3):899–901

    Article  PubMed  CAS  Google Scholar 

  • Sumikawa K, Mu Z, Inoue T, Okochi T, Yoshida T, Adachi K (1993) Changes in erythrocyte membrane phospholipid composition induced by physical training and physical exercise. Eur J Appl Physiol Occup Physiol 67(2):132–137

    Article  PubMed  CAS  Google Scholar 

  • Szygula Z (1990) Erythrocytic system under the influence of physical exercise and training. Sports Med 10:181–197

    Article  PubMed  CAS  Google Scholar 

  • Telford RD, Cunningham RB (1991) Sex, sport and body-size dependency of hematology in highly trained athletes. Med Sci Sports Exerc 23:788–794

    PubMed  CAS  Google Scholar 

  • Telford RD, Sly GJ, Hahn AG, Cunningham RB, Bryant C, Smith JA (2003) Footstrike is the major cause of hemolysis during running. J Appl Physiol 94(1):38–42

    PubMed  CAS  Google Scholar 

  • Thompson JL, Manore MM, Skinner JS, Ravussin E, Spraul M (1995) Daily energy expenditure in male endurance athletes with differing energy intake. Med Sci Sports Exerc 27(3):347–354

    PubMed  CAS  Google Scholar 

  • Tse WT, Lux SE (1999) Red blood cell membrane disorders. Br J Haematol 104(1):2–13

    Article  PubMed  CAS  Google Scholar 

  • Ubels FL, van Essen GG, de Jong PE, Stegeman CA (1999) Exercise induced macroscopic haematuria: run for a diagnosis? Nephrol Dial Transplant 14(8):2030–2031

    Article  PubMed  CAS  Google Scholar 

  • Van Erp-Baart AM, Saris WH, Brinkhorst RA, Vos JA, Elvers JW (1989) Nationwide survey on nutritional habits in elite athletes. Int J Sports Med 10(Suppl1):S3–S10

    PubMed  Google Scholar 

  • Weight LM, Byrne M, Jacobs P (1991) Haemolytic effects of exercise. Clin Sci 81:147–52

    PubMed  CAS  Google Scholar 

  • Yoshimura H, Inoue T, Yamada T, Shiraki K (1980) Anemia during hard physical training and its causal mechanism with special reference to protein nutrition. Wld Rev Nutr Diet 35:1–86

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Beneke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beneke, R., Bihn, D., Hütler, M. et al. Haemolysis caused by alterations of α- and β-spectrin after 10 to 35 min of severe exercise. Eur J Appl Physiol 95, 307–312 (2005). https://doi.org/10.1007/s00421-005-0010-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-005-0010-y

Keywords

Navigation