Skip to main content
Log in

Hemolysis Is Responsible for Elevation of Serum Iron Concentration After Regular Exercises in Judo Athletes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Serum iron concentration increases in marathon athletes after running due to mechanical destruction of red blood cells (hemolysis). This study was performed to examine whether serum iron concentration increases after regular Judo exercise, and if so, whether such post-exercise iron increase is caused by hemolysis. We examined biochemical parameters related to red blood cell and iron metabolism in 16 male competitive Judo athletes before and after traditional exercise training composed of basic movements and freestyle matchup. The parameters were adjusted for changes in plasma volume based on simultaneously measured albumin concentration. The red blood cell count, hemoglobin concentration, and hematocrit levels decreased significantly, by 6.0–8.4%, after Judo exercise. The serum iron concentration and transferrin saturation increased significantly, from 87 ± 34 μg/dL to 98 ± 29 μg/dL and from 27.1 ± 9.7% to 31.2 ± 9.0%, respectively. Furthermore, the serum free hemoglobin level increased by 33.9% (p < 0.05), and haptoglobin concentration decreased by 19.2% (p < 0.001). A significant negative correlation was observed between Δ haptoglobin concentration and Δ serum iron concentration (r = − 0.551, p = 0.027). The results of this study indicate that serum iron concentration increases significantly after Judo exercise due to hemolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BW:

Body weight

CK:

Creatine kinase

CK-MB:

CK muscle-brain

ECLIA:

Electrochemiluminescence immunoassay

free-Hb:

Free hemoglobin

Hb:

Hemoglobin

Ht:

Hematocrit

MCH:

Mean corpuscular hemoglobin

MCHC:

Mean corpuscular hemoglobin concentration

MCV:

Mean corpuscular volume

MPV:

Mean platelet volume

MW:

Molecular weight

PDW:

Platelet distribution width

Plt:

Platelet

RBC:

Red blood cell

RDW-CV:

Red cell distribution width

SD:

Standard deviation

TAST:

Transferrin saturation

TIBC:

Total iron-binding capacity

UIBC:

Unsaturated iron-binding capacity

WBC:

White blood cell

References

  1. Franchini E, Brito CJ, Fukuda DH, Artioli GG (2014) The physiology of judo-specific training modalities. J Strength Cond Res 28:1474–1481. https://doi.org/10.1519/jsc.0000000000000281

    Article  PubMed  Google Scholar 

  2. Tamura M, Hirose N, Miida T, Hirayama S, Ueno T, Tsuzuki T, Yano K, Kanemochi T (2018) Biochemical indicators and systemic reaction times in male judo competitors during regular and pre-competition conditioning periods. Archives of Budo 14:205–212

    Google Scholar 

  3. Parks RB, Hetzel SJ, Brooks MA (2017) Iron deficiency and anemia among collegiate athletes: a retrospective chart review. Med Sci Sports Exerc 49:1711–1715. https://doi.org/10.1249/mss.0000000000001259

    Article  PubMed  Google Scholar 

  4. Shaskey DJ, Green GA (2000) Sports haematology. Sports Med 29:27–38. https://doi.org/10.2165/00007256-200029010-00003

    Article  CAS  PubMed  Google Scholar 

  5. Abarbanel J, Benet AE, Lask D, Kimche D (1990) Sports hematuria. J Urol 143:887–890. https://doi.org/10.1016/s0022-5347(17)40125-x

    Article  CAS  PubMed  Google Scholar 

  6. Khalighi MA, Henriksen KJ, Chang A, Meehan SM (2014) March hemoglobinuria-associated acute tubular injury. Clin Kidney J 7:488–489. https://doi.org/10.1093/ckj/sfu078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saran T, Zawadka M, Chmiel S, Mazur A (2018) Sweat iron concentration during 4-week exercise training. Ann Agric Environ Med 25:500–503. https://doi.org/10.26444/aaem/78787

    Article  CAS  PubMed  Google Scholar 

  8. Sanchis-Gomar F, Lippi G (2014) Physical activity-an important preanalytical variable. Biochemia Medica 24:68–79. https://doi.org/10.11613/bm.2014.009

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sawka MN, Montain SJ (2000) Fluid and electrolyte supplementation for exercise heat stress. Am J Clin Nutr 72:564S–572S

    Article  CAS  Google Scholar 

  10. Szőke D, Panteghini M (2012) Diagnostic value of transferrin. Clin Chim Acta 413:1184–1189. https://doi.org/10.1016/j.cca.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  11. Bauer P, Zeissler S, Walscheid R, Frech T, Hillebrecht A (2018) Acute effects of high-intensity exercise on hematological and iron metabolic parameters in elite male and female dragon boating athletes. Phys Sportsmed 46:335–341. https://doi.org/10.1080/00913847.2018.1482187

    Article  PubMed  Google Scholar 

  12. Liu C-H, Tseng Y-F, Lai J-I, Chen Y-Q, Wang S-H, Kao W-F, Li L-H, Chiu Y-H, How C-K, Chang W-H (2018) The changes of red blood cell viscoelasticity and sports anemia in male 24-hr ultra-marathoners. Journal of the Chinese Medical Association 81:475–481. https://doi.org/10.1016/j.jcma.2017.09.011

    Article  PubMed  Google Scholar 

  13. Goto K, Sumi D, Kojima C, Ishibashi A (2017) Post-exercise serum hepcidin levels were unaffected by hypoxic exposure during prolonged exercise sessions. Plos One 12. https://doi.org/10.1371/journal.pone.0183629

  14. Govus AD, Abbiss CR, Garvican-Lewis LA, Swinkels DW, Laarakkers CM, Gore CJ, Peeling P (2014) Acute hypoxic exercise does not alter post-exercise iron metabolism in moderately trained endurance athletes. European Journal ofApplied Physiology 114:2183–2191. https://doi.org/10.1007/s00421-014-2938-2

    Article  CAS  Google Scholar 

  15. Peeling P, Sim M, Badenhorst CE, Dawson B, Govus AD, Abbiss CR, Swinkels DW, Trinder D (2014) Iron status and the acute post-exercise hepcidin response in athletes. Plos One 9. https://doi.org/10.1371/journal.pone.0093002

  16. Badenhorst CE, Dawson B, Goodman C, Sim M, Cox GR, Gore CJ, Tjalsma H, Swinkels DW, Peeling P (2014) Influence of post-exercise hypoxic exposure on hepcidin response in athletes. Eur J Appl Physiol 114:951–959. https://doi.org/10.1007/s00421-014-2829-6

    Article  CAS  PubMed  Google Scholar 

  17. Bejder J, Andersen AB, Goetze JP, Aachmann-Andersen NJ, Nordsborg NB (2017) Plasma volume reduction and hematological fluctuations in high-level athletes after an increased training load. Scand J Med Sci Sports 27:1605–1615. https://doi.org/10.1111/sms.12825

    Article  CAS  PubMed  Google Scholar 

  18. Van Beaumont W (1972) Evaluation of hemoconcentration from hematocrit measurements. J Appl Physiol 32:712–713

    Article  Google Scholar 

  19. Kimura T, Inamizu T, Sekikawa K, Kakehashi M, Onari K (2009) Determinants of the daily rhythm of blood fluidity. J Circadian Rhythms 7:7. https://doi.org/10.1186/1740-3391-7-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hirayama S, Soda S, Ito Y, Matsui H, Ueno T, Fukushima Y, Ohmura H, Hanyu O, Aizawa Y, Miida T (2010) Circadian change of serum concentration of small dense LDL-cholesterol in type 2 diabetic patients. Clin Chim Acta 411:253–257. https://doi.org/10.1016/j.cca.2009.11.017

    Article  CAS  PubMed  Google Scholar 

  21. Miida T, Nakamura Y, Mezaki T, Hanyu O, Maruyama S, Horikawa Y, Izawa S, Yamada Y, Matsui H, Okada M (2002) LDL-cholesterol and HDL-cholesterol concentrations decrease during the day. Ann Clin Biochem 39:241–249. https://doi.org/10.1258/0004563021901946

    Article  CAS  PubMed  Google Scholar 

  22. Peters T Jr (1970) Serum albumin. Adv Clin Chem 13:37–111. https://doi.org/10.1016/s0065-2423(08)60385-6

    Article  CAS  PubMed  Google Scholar 

  23. Andersen JT, Dalhus B, Viuff D, Ravn BT, Gunnarsen KS, Plumridge A, Bunting K, Antunes F, Williamson R, Athwal S, Allan E, Evans L, Bjoras M, Kjaerulff S, Sleep D, Sandlie I, Cameron J (2014) Extending serum half-life of albumin by engineering neonatal Fc receptor ( FcRn) binding. J Biol Chem 289:13492–13502. https://doi.org/10.1074/jbc.M114.549832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller GD, Teramoto M, Smeal SJ, Cushman D, Eichner D (2019) Assessing serum albumin concentration following exercise-induced fluid shifts in the context of the athlete biological passport. Drug testing and analysis 11:782–791. https://doi.org/10.1002/dta.2571

    Article  CAS  PubMed  Google Scholar 

  25. Perovic A, Nikolac N, Braticevic MN, Milcic A, Sobocanec S, Balog T, Dabelic S, Dumic J (2017) Does recreational scuba diving have clinically significant effect on routine haematological parameters? Biochemia Medica 27:325–331. https://doi.org/10.11613/bm.2017.035

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robach P, Boisson RC, Vincent L, Lundby C, Moutereau S, Gergele L, Michel N, Duthil E, Feasson L, Millet GY (2014) Hemolysis induced by an extreme mountain ultra-marathon is not associated with a decrease in total red blood cell volume. Scand J Med Sci Sports 24:18–27. https://doi.org/10.1111/j.1600-0838.2012.01481.x

    Article  CAS  PubMed  Google Scholar 

  27. Chou C-C, Sung Y-C, Davison G, Chen C-Y, Liao Y-H (2018) Short-term high-dose vitamin C and E supplementation attenuates muscle damage and inflammatory responses to repeated taekwondo competitions: a randomized placebo-controlled trial. Int J Med Sci 15:1217–1226. https://doi.org/10.7150/ijms.26340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeffers A, Gladwin MT, Kim-Shapiro DB (2006) Computation of plasma hemoglobin nitric oxide scavenging in hemolytic anemias. Free Radic Biol Med 41:1557–1565. https://doi.org/10.1016/j.freeradbiomed.2006.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shih AWY, McFarlane A, Verhovsek M (2014) Haptoglobin testing in hemolysis: measurement and interpretation. Am J Hematol 89:443–447. https://doi.org/10.1002/ajh.23623

    Article  CAS  PubMed  Google Scholar 

  30. Barcellini W, Fattizzo B (2015) Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis Markers 635670. https://doi.org/10.1155/2015/635670

  31. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SKA, Moestrup SK (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201. https://doi.org/10.1038/35051594

    Article  CAS  PubMed  Google Scholar 

  32. Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK (2013) The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxidative Med Cell Longev 523652. https://doi.org/10.1155/2013/523652

  33. Katsarou A, Pantopoulos K (2018) Hepcidin therapeutics. Pharmaceuticals 11:127. https://doi.org/10.3390/ph11040127

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant from High Technology Research Center Grant, Strategic Research Foundation at private universities (SH and TM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Hirayama.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiie-Yano, R., Hirayama, S., Tamura, M. et al. Hemolysis Is Responsible for Elevation of Serum Iron Concentration After Regular Exercises in Judo Athletes. Biol Trace Elem Res 197, 63–69 (2020). https://doi.org/10.1007/s12011-019-01981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01981-3

Keywords

Navigation