Skip to main content
Log in

Modified couple stress-based free vibration and dynamic response of rotating FG multilayer composite microplates reinforced with graphene platelets

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A centrifugally stiffened size-dependent model is developed for dynamic analysis of rotating functionally graded (FG) multilayer composite microplates reinforced with graphene platelets (GPLs) based on the modified couple stress theory and the first-order shear deformation theory. The effective elastic modulus of the graphene platelet-reinforced composite (GPLRC) is calculated on the basis of the modified Halpin–Tsai model, while a rule of mixture is adopted to predict the effective mass density and Poisson’s ratio. The second-kind Lagrange’s equations are employed to derive the governing equations of motion, in which the mode functions for displacements are constructed by Chebyshev polynomials multiplied by the boundary functions. The free vibration problem is determined by a complex modal analysis based on the state space method, and the dynamic responses under prescribed rotational motions are calculated by the fourth-order Runge–Kutta–Merson’s method. The convergence and comparative examples are carried out to validate the effectiveness and accuracy of the proposed model. A parametric study is conducted to investigate the effects of material length scale parameter, hub radius ratio, angular velocity, GPL weight fraction, distribution pattern and geometry property on the dynamic behaviors of the rotating FG GPLRC simply supported and cantilevered microplates. Numerical results show that the rotational motion and size dependency significantly affect the reinforcement effect of GPL. Results also indicate that the dispersion of the square GPLs with fewer graphene layers and larger contact surface area near the bottom and top positions can reinforce the stiffness more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  3. Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., Chen, Y.: An isotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B Condens. Matter. 405, 1301–1306 (2010)

    Article  Google Scholar 

  4. Bellucci, S., Balasubramanian, C., Micciulla, F., Rinaldi, G.: CNT composites for aerospace applications. J. Exp. Nanosci. 2(3), 193–206 (2007)

    Article  Google Scholar 

  5. Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Nakhaei Moghaddam, M.R., Alias, Y.: Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 69, 32–45 (2014)

    Article  Google Scholar 

  6. Gauvin, F., Robert, M.: Durability study of vinylester/silicate nanocomposites for civil engineering applications. Polym. Degrad. Stabil. 121, 359–368 (2015)

    Article  Google Scholar 

  7. Bouazza, M., Zenkour, A.M.: Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. Arch. Appl. Mech. 90(8), 1755–1769 (2020)

    Article  Google Scholar 

  8. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkarm, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)

    Article  Google Scholar 

  9. Wang, F., Drzal, L.T., Qin, Y., Huang, Z.: Mechanical properties and thermal conductivity of graphene nanoplatelets/epoxy composites. J. Mater. Sci. 50(3), 1082–1093 (2015)

    Article  Google Scholar 

  10. Shen, H.-S., Xiang, Y., Lin, F., Hui, D.: Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos. B 119, 67–78 (2017)

    Article  MATH  Google Scholar 

  11. Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput. Methods Appl. Mech. Engrg. 319, 175–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 140, 110–119 (2017)

    Article  Google Scholar 

  13. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct. 193, 281–294 (2018)

    Article  Google Scholar 

  14. Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. B 134, 106–113 (2018)

    Article  Google Scholar 

  15. Liu, D., Li, Z., Kitipornchai, S., Yang, J.: Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates. Compos. Struct. 229, 111453 (2019)

    Article  Google Scholar 

  16. Reddy, R.M.R., Karunasena, W., Lokuge, W.: Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions. Aerosp. Sci. Tech. 78, 147–156 (2018)

    Article  Google Scholar 

  17. Guo, H., Cao, S., Yang, T., Chen, Y.: Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Int. J. Mech. Sci. 142, 610–621 (2018)

    Article  Google Scholar 

  18. Thai, C.H., Ferreira, A.J.M., Tran, T.D., Phung-Van, P.: Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos. Struct. 220, 749–759 (2019)

    Article  Google Scholar 

  19. Selim, B.A., Liu, Z., Liew, K.M.: Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Struct. 145, 106372 (2019)

    Article  Google Scholar 

  20. Al-Furjan, M.S.H., Habibi, M., Safarpour, H.: Vibration control of a smart shell reinforced by graphene nanoplatelets. Int. J. Appl. Mech. 12(06), 2050066 (2020)

    Article  Google Scholar 

  21. Nguyen, N.V., Nguyen-Xuan, H., Lee, J.: A quasi-three-dimensional isogeometric model for porous sandwich functionally graded plates reinforced with graphene nanoplatelets. J. Sandw. Struct. Mater. 24(2), 825–859 (2022)

    Article  Google Scholar 

  22. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  23. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  24. Yue, Y.M., Xu, K.Y., Tan, Z.Q., Wang, W.J., Wang, D.: The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate. Arch. Appl. Mech. 89(7), 1301–1315 (2019)

    Article  Google Scholar 

  25. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. An. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. An. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  27. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  28. Phung-Van, P., Thai, C.H., Nguyen-Xuan, H., Wahab, M.A.: Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Compos. B 164, 215–225 (2019)

    Article  Google Scholar 

  29. Babaei, A.: Longitudinal vibration responses of axially functionally graded optimized MEMS gyroscope using Rayleigh-Ritz method, determination of discernible patterns and chaotic regimes. SN Appl. Sci. 1(8), 1–12 (2019)

    Article  Google Scholar 

  30. Babaei, A., Yang, C.X.: Vibration analysis of rotating rods based on the nonlocal elasticity theory and coupled displacement field. Microsyst. Technol. 25(3), 1077–1085 (2019)

    Article  Google Scholar 

  31. Rahmani, A., Faroughi, S., Friswell, M.I., Babaei, A.: Eringen’s nonlocal and modified couple stress theories applied to vibrating rotating nanobeams with temperature effects. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1939468

    Article  Google Scholar 

  32. Abouelregal, A.E., Atta, D., Sedighi, H.M.: Vibrational behavior of thermoelastic rotating nanobeams with variable thermal properties based on memory-dependent derivative of heat conduction model. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02110-8

    Article  Google Scholar 

  33. Fang, J., Yin, B., Zhang, X., Yang, B.: Size-dependent vibration of functionally graded rotating nanobeams with different boundary conditions based on nonlocal elasticity theory. Proc. IMechE C J. Mech. Eng. Sci. 236(6), 2756–2774 (2022)

    Article  Google Scholar 

  34. Thai, S., Thai, H.T., Vo, P., Patel, V.I.: Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis. Comput. Struct. 190, 219–241 (2017)

    Article  Google Scholar 

  35. Thai, C.H., Ferreira, A.J.M., Phung-Van, P.: Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Compos. B 169, 174–188 (2019)

    Article  Google Scholar 

  36. Mohammad-Rezaei Bidgoli, E., Arefi, M.: Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation. J. Sandw. Struct. Mater. 23(2), 436–472 (2021)

    Article  Google Scholar 

  37. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  38. Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P., Nguyen-Xuan, H., Vo, T.P.: A refined quasi -3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Methods Appl. Mech. Eng. 313, 904–940 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fang, J., Gu, J., Wang, H.: Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory. Int. J. Mech. Sci. 136, 188–199 (2018)

    Article  Google Scholar 

  40. Farzam, A., Hassani, B.: Isogeometric analysis of in-plane functionally graded porous microplates using modified couple stress theory. Aerosp. Sci. Tech. 91, 508–524 (2019)

    Article  Google Scholar 

  41. Fan, F., Xu, Y., Sahmani, S., Safaei, B.: Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput. Methods Appl. Mech. Eng. 372, 113400 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Guo, L., Xin, X., Shahsavari, D., Karami, B.: Dynamic response of porous E-FGM thick microplate resting on elastic foundation subjected to moving load with acceleration. Thin-Walled Struct. 173, 108981 (2022)

    Article  Google Scholar 

  43. Arefi, M., Bidgoli, E.M.R., Rabczuk, T.: Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Eur. J. Mech. A-Solids 77, 103802 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Arefi, M., Firouzeh, S., Bidgoli, E.M.R., Civalek, Ö.: Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Compos. Struct. 247, 112391 (2020)

    Article  Google Scholar 

  45. Arefi, M., Adab, N.: Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates. Waves Random Complex (2021). https://doi.org/10.1080/17455030.2021.1989084

    Article  Google Scholar 

  46. Thai, C.H., Ferreira, A.J.M., Tran, T.D., Phung-Van, P.: A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Compos. Struct. 234, 111695 (2020)

    Article  Google Scholar 

  47. Afshari, H., Adab, N.: Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mech. Based Des. Struct. 50(1), 184–205 (2022)

    Article  Google Scholar 

  48. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Lampani, L., Civalek, Ö.: Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect. Compos. Struct. 258, 113430 (2021)

    Article  Google Scholar 

  49. Arshid, E., Amir, S., Loghman, A.: Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp. Sci. Tech. 111, 106561 (2021)

    Article  Google Scholar 

  50. Tao, C., Dai, T.: Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates. Eur. J. Mech. A-Solids 86, 104171 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tao, C., Dai, T.: Modified couple stress-based nonlinear static bending and transient responses of size-dependent sandwich microplates with graphene nanocomposite and porous layers. Thin-Walled Struct. 171, 108704 (2022)

    Article  Google Scholar 

  52. Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021)

    Article  Google Scholar 

  53. Fan, J., Zhang, D., Shen, H.: Dynamic modeling and simulation of a rotating flexible hub-beam based on different discretization methods of deformation fields. Arch. Appl. Mech. 90(2), 291–304 (2020)

    Article  Google Scholar 

  54. Karahan, E.D., Özdemir, Ö.: Finite element formulation and free vibration analyses of rotating functionally graded blades. J. Theor. Appl. Mech. 59(1), 3–15 (2021)

    Google Scholar 

  55. Yoo, H.H., Chung, J.: Dynamics of rectangular plates undergoing prescribed overall motion. J. Sound Vib. 239(1), 123–137 (2001)

    Article  Google Scholar 

  56. Yoo, H.H., Pierre, C.: Modal characteristic of a rotating rectangular cantilever plate. J. Sound Vib. 259(1), 81–96 (2003)

    Article  Google Scholar 

  57. Li, L., Zhang, D.G.: Free vibration analysis of rotating functionally graded rectangular plates. Compos. Struct. 136, 493–504 (2016)

    Article  Google Scholar 

  58. Fang, J., Zhou, D.: Free vibration analysis of rotating Mindlin plates with variable thickness. Int. J. Struct. Stab. Dy. 17(04), 1750046 (2017)

    Article  MathSciNet  Google Scholar 

  59. Guo, H., Huang, K., Lei, Z.: Dynamic analysis of rotating laminated composite cantilever plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Mech. Based Des. Struct. (2020). https://doi.org/10.1080/15397734.2020.1803083

    Article  Google Scholar 

  60. Guo, H., Ouyang, X., Yang, T., Żur, K.K., Reddy, J.N.: On the dynamics of rotating cracked functionally graded blades reinforced with graphene nanoplatelets. Eng. Struct. 249, 113286 (2021)

    Article  Google Scholar 

  61. Zhao, T., Ma, Y., Zhang, H., Yang, J.: Coupled free vibration of spinning functionally graded porous double-bladed disk systems reinforced with graphene nanoplatelets. Materials 13(24), 5610 (2020)

    Article  Google Scholar 

  62. Zhao, T.Y., Jiang, Z.Y., Zhao, Z., Xie, L.Y., Yuan, H.Q.: Modeling and free vibration analysis of rotating hub-blade assemblies reinforced with graphene nanoplatelets. J. Strain Anal. Eng. 56(8), 563–573 (2021)

    Article  Google Scholar 

  63. Zhao, T.Y., Wang, Y.X., Yu, Y.X., Cai, Y., Wang, Y.Q.: Modeling and vibration analysis of a spinning assembled beam–plate structure reinforced by graphene nanoplatelets. Acta Mech. 232(10), 3863–3879 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  64. Shojaeefard, M.H., Googarchin, H.S., Mahinzare, M., Ghadiri, M.: Free vibration and critical angular velocity of a rotating variable thickness two-directional FG circular microplate. Microsyst. Technol. 24(3), 1525–1543 (2018)

    Article  Google Scholar 

  65. Mahinzare, M., Barooti, M.M., Ghadiri, M.: Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment. Microsyst. Technol. 24(3), 1695–1711 (2018)

    Article  Google Scholar 

  66. Fang, J., Wang, H., Zhang, X.: On size-dependent dynamic behavior of rotating functionally graded Kirchhoff microplates. Int. J. Mech. Sci. 152, 34–50 (2019)

    Article  Google Scholar 

  67. Shenas, A.G., Ziaee, S., Malekzadeh, P.: Nonlinear deformation of rotating functionally graded trapezoidal microplates in thermal environment. Compos. Struct. 265, 113675 (2021)

    Article  Google Scholar 

  68. Shenas, A.G., Ziaee, S., Malekzadeh, P.: Nonlinear free vibration of rotating FG trapezoidal microplates in thermal environment. Thin-Walled Struct. 170, 108614 (2022)

    Article  Google Scholar 

  69. Ling, X., Tu, S.-T., Gong, J.-M.: Application of Runge–Kutta–Merson algorithm for creep damage analysis. Int. J. Pres. Ves. Pip. 77, 243–248 (2000)

    Article  Google Scholar 

  70. Zolochevsky, A., Galishin, A., Sklepus, S., Voyiadjis, G.Z.: Analysis of creep deformation and creep damage in thin-walled branched shells from materials with different behavior in tension and compression. Int. J. Solids Struct. 44(16), 5075–5100 (2007)

    Article  MATH  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 11872031) and the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshi Fang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The details of all elements in matrices \({\overline{\mathbf{M}}}\), \({\overline{\mathbf{K}}}\), \({\overline{\mathbf{C}}}\) and \({\overline{\mathbf{Q}}}\) in Eq. (37) are given by

$$\begin{aligned} \overline{M}_{ij}^{uu} = & \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{i} \overline{U}_{j} } {\text{d}}\xi {\text{d}}\eta } ,\;\overline{M}_{ij}^{{u\varphi_{x} }} = \overline{I}_{1} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{i} \overline{\varphi }_{xj} } {\text{d}}\xi {\text{d}}\eta } ,\;\overline{M}_{ij}^{vv} = \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{i} \overline{V}_{j} } {\text{d}}\xi {\text{d}}\eta } \\ \overline{M}_{ij}^{{v\varphi_{y} }} = & \overline{I}_{1} \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{i} \overline{\varphi }_{yj} } {\text{d}}\xi {\text{d}}\eta } ,\;\overline{M}_{ij}^{ww} = \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{i} \overline{W}_{j} } {\text{d}}\xi {\text{d}}\eta } \\ \overline{M}_{ij}^{{\varphi_{x} \varphi_{x} }} = & \overline{I}_{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{xi} \overline{\varphi }_{xj} } {\text{d}}\xi {\text{d}}\eta } ,\;\overline{M}_{ij}^{{\varphi_{y} \varphi_{y} }} = \overline{I}_{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{yi} \overline{\varphi }_{yj} } {\text{d}}\xi {\text{d}}\eta } \\ \end{aligned}$$
(A.1a–g)
$$\begin{aligned} \overline{C}_{ij}^{uw} = & 2\gamma \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{i} \overline{W}_{j} } {\text{d}}\xi {\text{d}}\eta } ,\;\overline{C}_{ij}^{wu} = - 2\gamma \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{i} \overline{U}_{j} } {\text{d}}\xi {\text{d}}\eta } \\ \overline{C}_{ij}^{{w\varphi_{x} }} = & - 2\overline{I}_{1} \gamma \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{i} \overline{\varphi }_{xj} } {\text{d}}\xi {\text{d}}\eta } ,\;\overline{C}_{ij}^{{\varphi_{x} w}} = 2\overline{I}_{1} \gamma \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{xi} \overline{W}_{j} } {\text{d}}\xi {\text{d}}\eta } \\ \end{aligned}$$
(A.2a–d)
$$\begin{gathered} \overline{K}_{ij}^{uu} = h_{0}^{2} a_{11} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\xi }} \overline{U}_{{j{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + h_{0}^{2} \alpha^{2} a_{66} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\eta }} \overline{U}_{{j{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } - \gamma^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{i} \overline{U}_{j} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \;\; + \frac{1}{4}a_{66} \beta^{2} h_{0}^{4} \alpha^{2} \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\xi \eta }} \overline{U}_{{j{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\eta \eta }} \overline{U}_{{j{,}\eta \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.3)
$$\begin{gathered} \overline{K}_{ij}^{uv} = a_{12} h_{0}^{2} \alpha \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\xi }} \overline{V}_{{j{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } + a_{66} h_{0}^{2} \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\eta }} \overline{V}_{{j{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \; - \frac{1}{4}a_{66} \beta^{2} h_{0}^{4} \alpha \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\xi \eta }} \overline{V}_{{j{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\eta \eta }} \overline{V}_{{j{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.4)
$$\overline{K}_{ij}^{uw} = \dot{\gamma }\int_{0}^{1} {\int_{0}^{1} {\overline{U}_{i} \overline{W}_{j} } {\text{d}}\xi {\text{d}}\eta }$$
(A.5)
$$\begin{gathered} \overline{K}_{ij}^{{u\varphi_{x} }} = - \overline{I}_{1} \gamma^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{i} \overline{\varphi }_{xj} } {\text{d}}\xi {\text{d}}\eta } + b_{11} h_{0} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\xi }} \overline{\varphi }_{{xj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + b_{66} h_{0} \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\eta }} \overline{\varphi }_{{xj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \quad + \frac{1}{4}b_{66} \beta^{2} h_{0}^{3} \alpha^{2} \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\xi \eta }} \overline{\varphi }_{{xj{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\eta \eta }} \overline{\varphi }_{{xj{,}\eta \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.6)
$$\begin{gathered} \overline{K}_{ij}^{{u\varphi_{y} }} = b_{12} h_{0} \alpha \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\xi }} \overline{\varphi }_{{yj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } + b_{66} h_{0} \alpha \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\eta }} \overline{\varphi }_{{yj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \quad - \frac{1}{4}b_{66} \beta^{2} h_{0}^{3} \alpha \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\xi \eta }} \overline{\varphi }_{{yj{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{U}_{{i{,}\eta \eta }} \overline{\varphi }_{{yj{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.7)
$$\overline{K}_{ij}^{vu} = \overline{K}_{ji}^{uv}$$
(A.8)
$$\begin{gathered} \overline{K}_{ij}^{vv} = a_{11} h_{0}^{2} \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\eta }} \overline{V}_{{j{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } + a_{66} h_{0}^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi }} \overline{V}_{{j{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \;\; + \frac{1}{4}a_{66} \beta^{2} h_{0}^{4} \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi \xi }} \overline{V}_{{j{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi \eta }} \overline{V}_{{j{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.9)
$$\begin{gathered} \overline{K}_{ij}^{{v\varphi_{x} }} = b_{12} h_{0} \alpha \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\eta }} \overline{\varphi }_{{xj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + b_{66} h_{0} \alpha \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi }} \overline{\varphi }_{{xj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \quad - \frac{1}{4}b_{66} \beta^{2} h_{0}^{3} \alpha \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi \xi }} \overline{\varphi }_{{xj{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi \eta }} \overline{\varphi }_{{xj{,}\eta \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.10)
$$\begin{gathered} \overline{K}_{ij}^{{v\varphi_{y} }} = b_{11} h_{0} \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\eta }} \overline{\varphi }_{{yj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } + b_{66} h_{0} \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi }} \overline{\varphi }_{{yj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \quad + \frac{1}{4}b_{66} \beta^{2} h_{0}^{3} \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi \xi }} \overline{\varphi }_{{yj{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{V}_{{i{,}\xi \eta }} \overline{\varphi }_{{yj{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.11)
$$\overline{K}_{ij}^{wu} = - \overline{K}_{ji}^{uw}$$
(A.12)
$$\begin{gathered} \overline{K}_{ij}^{ww} = a_{44} h_{0}^{2} \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi }} \overline{W}_{{j{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\eta }} \overline{W}_{{j{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) + \gamma^{2} \left( {\int_{0}^{1} {\int_{0}^{1} {T{(}\xi {)}\overline{W}_{{i{,}\xi }} \overline{W}_{{j{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } } \right. \hfill \\ \quad \quad \;\;\left. { - \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{i} \overline{W}_{j} } {\text{d}}\xi {\text{d}}\eta } } \right) + \frac{1}{4}a_{66} \beta^{2} h_{0}^{4} \left( {4\alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi \eta }} \overline{W}_{{j{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{4} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\eta \eta }} \overline{W}_{{j{,}\eta \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right. \hfill \\ \quad \quad \;\;\left. { + \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi \xi }} \overline{W}_{{j{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } - \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\eta \eta }} \overline{W}_{{j{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } - \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi \xi }} \overline{W}_{{j{,}\eta \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.13)
$$\begin{gathered} \overline{K}_{ij}^{{w\varphi_{x} }} = - \overline{I}_{1} \dot{\gamma }\int_{0}^{1} {\int_{0}^{1} {\overline{W}_{i} \overline{\varphi }_{xj} } {\text{d}}\xi {\text{d}}\eta } + a_{44} h_{0} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi }} \overline{\varphi }_{xj} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \quad - \frac{1}{4}a_{66} \beta^{2} h_{0}^{3} \left( {2\alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi \eta }} \overline{\varphi }_{{xj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } - \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\eta \eta }} \overline{\varphi }_{{xj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi \xi }} \overline{\varphi }_{{xj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.14)
$$\begin{gathered} \overline{K}_{ij}^{{w\varphi_{y} }} = a_{44} h_{0} \alpha \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\eta }} \overline{\varphi }_{yj} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \quad - \frac{1}{4}a_{66} \beta^{2} h_{0}^{3} \alpha \left( {2\int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi \eta }} \overline{\varphi }_{{yj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\eta \eta }} \overline{\varphi }_{{yj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } - \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{{i{,}\xi \xi }} \overline{\varphi }_{{yj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.15)
$$\overline{K}_{ij}^{{\varphi_{x} u}} = \overline{K}_{ji}^{{u\varphi_{x} }} ,\;\overline{K}_{ij}^{{\varphi_{x} v}} = \overline{K}_{ji}^{{v\varphi_{x} }}$$
(A.16a, b)
$$\begin{gathered} \overline{K}_{ij}^{{\varphi_{x} w}} = \overline{I}_{1} \dot{\gamma }\int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{xi} \overline{W}_{j} } {\text{d}}\xi {\text{d}}\eta } + a_{44} h_{0} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{xi} \overline{W}_{{j{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \quad - \frac{1}{4}a_{66} \beta^{2} h_{0}^{3} \left( {2\alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\eta }} \overline{W}_{{j{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } - \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\xi }} \overline{W}_{{j{,}\eta \eta }} } {\text{d}}\xi {\text{d}}\eta } + \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\xi }} \overline{W}_{{j{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.17)
$$\begin{gathered} \overline{K}_{ij}^{{\varphi_{x} \varphi_{x} }} = - \overline{I}_{2} \gamma^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{xi} \overline{\varphi }_{xj} } {\text{d}}\xi {\text{d}}\eta } + a_{44} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{xi} \overline{\varphi }_{xj} } {\text{d}}\xi {\text{d}}\eta } + d_{11} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\xi }} \overline{\varphi }_{{xj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \;\quad + d_{66} \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\eta }} \overline{\varphi }_{{xj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } + \frac{1}{4}a_{66} \beta^{2} h_{0}^{2} \left( {4\alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\eta }} \overline{\varphi }_{{xj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } + \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\xi }} \overline{\varphi }_{{xj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \quad \quad \quad \; + \frac{1}{4}d_{66} \beta^{2} h_{0}^{2} \alpha^{2} \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\xi \eta }} \overline{\varphi }_{{xj{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\eta \eta }} \overline{\varphi }_{{xj{,}\eta \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.18)
$$\begin{gathered} \overline{K}_{ij}^{{\varphi_{x} \varphi_{y} }} = d_{12} \alpha \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\xi }} \overline{\varphi }_{{yj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } + d_{66} \alpha \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\eta }} \overline{\varphi }_{{yj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \;\quad - \frac{1}{4}a_{66} \beta^{2} h_{0}^{2} \alpha \left( {2\int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\eta }} \overline{\varphi }_{{yj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\xi }} \overline{\varphi }_{{yj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \quad \quad \quad \; - \frac{1}{4}d_{66} \beta^{2} h_{0}^{2} \alpha \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\xi \eta }} \overline{\varphi }_{{yj{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{xi{,}\eta \eta }} \overline{\varphi }_{{yj{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.19)
$$\overline{K}_{ij}^{{\varphi_{y} u}} = \overline{K}_{ji}^{{u\varphi_{y} }} ,\;\overline{K}_{ij}^{{\varphi_{y} v}} = \overline{K}_{ji}^{{v\varphi_{y} }} ,\;\overline{K}_{ij}^{{\varphi_{y} w}} = \overline{K}_{ji}^{{w\varphi_{y} }} ,\;\overline{K}_{ij}^{{\varphi_{y} \varphi_{x} }} = \overline{K}_{ji}^{{\varphi_{x} \varphi_{y} }}$$
(A.20a–d)
$$\begin{gathered} \overline{K}_{ij}^{{\varphi_{y} \varphi_{y} }} = a_{44} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{yi} \overline{\varphi }_{yj} } {\text{d}}\xi {\text{d}}\eta } + d_{11} \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{yi{,}\eta }} \overline{\varphi }_{{yj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } \hfill \\ \quad \quad \;\quad + d_{66} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{yi{,}\xi }} \overline{\varphi }_{{yj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + \frac{1}{4}a_{66} \beta^{2} h_{0}^{2} \left( {4\int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{yi{,}\xi }} \overline{\varphi }_{{yj{,}\xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{yi{,}\eta }} \overline{\varphi }_{{yj{,}\eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \quad \quad \quad \; + \frac{1}{4}d_{66} \beta^{2} h_{0}^{2} \left( {\int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{yi{,}\xi \xi }} \overline{\varphi }_{{yj{,}\xi \xi }} } {\text{d}}\xi {\text{d}}\eta } + \alpha^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{{yi{,}\xi \eta }} \overline{\varphi }_{{yj{,}\xi \eta }} } {\text{d}}\xi {\text{d}}\eta } } \right) \hfill \\ \end{gathered}$$
(A.21)
$$\overline{Q}_{i}^{u} = \frac{{\gamma^{2} }}{{h_{0} }}\int_{0}^{1} {\int_{0}^{1} {{(}\delta { + }\xi {)}\overline{U}_{i} } {\text{d}}\xi {\text{d}}\eta } - \overline{I}_{1} \dot{\gamma }\int_{0}^{1} {\int_{0}^{1} {\overline{U}_{i} } {\text{d}}\xi {\text{d}}\eta }$$
(A.22)
$$\overline{Q}_{i}^{w} = \frac{{\dot{\gamma }}}{{h_{0} }}\int_{0}^{1} {\int_{0}^{1} {{(}\delta { + }\xi {)}\overline{W}_{i} } {\text{d}}\xi {\text{d}}\eta } + \overline{I}_{1} \gamma^{2} \int_{0}^{1} {\int_{0}^{1} {\overline{W}_{i} } {\text{d}}\xi {\text{d}}\eta }$$
(A.23)
$$\overline{Q}_{i}^{{\varphi_{x} }} = \frac{{\overline{I}_{1} \gamma^{2} }}{{h_{0} }}\int_{0}^{1} {\int_{0}^{1} {{(}\delta { + }\xi {)}\overline{\varphi }_{xi} } {\text{d}}\xi {\text{d}}\eta } - \overline{I}_{2} \dot{\gamma }\int_{0}^{1} {\int_{0}^{1} {\overline{\varphi }_{xi} } {\text{d}}\xi {\text{d}}\eta }$$
(A.24)

in which, the dimensionless coefficients shown in Eqs. (A.1)–(A.24) are given by

$$\left( {\overline{I}_{1} {,}\;\overline{I}_{2} } \right) = \left( {\frac{{I_{1} }}{{I_{0} h}}{,}\;\frac{{I_{2} }}{{I_{0} h^{2} }}} \right)$$
(A.25)
$$\left( {a_{11} ,\;a_{12} ,\;a_{44} ,\;a_{66} } \right) = \left( {A_{11} ,\;A_{12} ,\;A_{44} ,\;A_{66} } \right)\frac{{T^{*2} }}{{I_{0} h^{2} }}$$
(A.26)
$$\left( {b_{11} {,}\;b_{12} {,}\;b_{66} } \right) = \left( {B_{11} {,}\;B_{12} {,}\;B_{66} } \right)\frac{{T^{*2} }}{{I_{0} h^{2} a}}$$
(A.27)
$$\left( {d_{11} ,\;d_{12} ,\;d_{66} } \right) = \left( {D_{11} ,\;D_{12} ,\;D_{66} } \right)\frac{{T^{*2} }}{{I_{0} h^{2} a^{2} }}$$
(A.28)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Fang, J. Modified couple stress-based free vibration and dynamic response of rotating FG multilayer composite microplates reinforced with graphene platelets. Arch Appl Mech 93, 1051–1079 (2023). https://doi.org/10.1007/s00419-022-02313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02313-z

Keywords

Navigation