Skip to main content
Log in

Parametric study of planar flexible deployable structures consisting of Scissor-like elements using a novel multibody dynamic analysis methodology

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A general methodology for the dynamic modeling and analysis of planar flexible deployable structures consisting of scissor-like elements (SLEs) is presented. This modeling method is based on a comprehensive consideration of the symmetry and array characteristics of deployable structure and on an improved absolute node coordinate formulation (ANCF), which can model the warping of beam section using the locking-free shear deformable beam element. An effective node separation method is proposed to reduce the number of degrees of freedom of the dynamic equation in the ANCF framework, eliminate the constraint equations within and between SLEs and obtain a compact matrix. This reduction method has good adaptability and can be extended to all kinds of scissor deployable structures with array characteristics, whether they are planar or spatial structures. In addition, the modified generalized \(\alpha\) method is utilized to solve the motion equations of deployable structure and eliminate the false high-frequency response generated in the calculation process. Finally, the methodology is validated using a cantilever beam case, and the parametric dynamic response of 2 × 2 and 1 × 2 deployable structures is implemented in this paper. The obtained results show that flexibility has an important impact on the dynamic characteristics of large deployable structures, and the deployable structure is unstable near \(0^{ \circ }\) and \(90^{ \circ }\), and its safe working angle is \(17^{ \circ }\)\(75^{ \circ }\). It is necessary to carry out parametric research on this structures in the design stage because the prediction of these parameters such as initial configuration and component materials can improve the stability and deployment accuracy of deployable structures in orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cai, J.G., Deng, X.W., Zhang, Y.T., et al.: Folding behavior of a foldable prismatic mast with kresling origami pattern. J. Mech. Robot. 8(3), JMR-15-1160 (2016)

    Google Scholar 

  2. Jin, Y.L., Liu, T., Lyu, R.X., et al.: Theoretical analysis and experimental investigation on buckling of FAST Mast deployable structures. Int. J. Struct. Stab. Dyn. 15(5), 1450075 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J., Deng, X., Xu, Y., et al.: Geometry and motion analysis of origami-based deployable shelter structures. J. Struct. Eng. 141(10), 06015001 (2015)

    Article  Google Scholar 

  4. Otsuka, K., Makihara, K.: Absolute nodal coordinate beam element for modeling flexible and deployable aerospace structures. AIAA J. 57(3), 1343–1346 (2019)

    Article  Google Scholar 

  5. Li, Y.Y., Wang, C., Huang, W.H.: Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple revolute clearance joints. Mech. Syst. Signal Process. 117, 188–209 (2019)

    Article  Google Scholar 

  6. Wu, C., Viquerat, A.: Computational and experimental study on dynamic instability of extended bistable carbon/epoxy booms subjected to bending. Compos. Struct. 188(Mar.), 347–355 (2018)

    Article  Google Scholar 

  7. You, B.D., Liang, D., Hao, P.B., et al.: Deployment dynamical behavior of planetary rover mast mechanism considering geometric nonlinearity and laminated structure characteristics. Arch. Appl. Mech. 3, 1605–1623 (2020)

    Article  Google Scholar 

  8. Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Compos. Methods Appl. Mech. Eng. 195, 6860–6873 (2006)

    Article  MATH  Google Scholar 

  9. Zhang, Y.Q., Duan, B.Y., Li, T.J.: A controlled deployment method for flexible deployable space antennas. Acta Astronaut. 81(1), 19–29 (2012)

    Article  Google Scholar 

  10. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Peng, Q.A., Wang, S.M., Li, B., et al.: Dynamics analysis of deployable structures considering a two-dimensional coupled thermo-structural effect. Int. J. Aerosp. Eng. 2018, 1752815 (2018)

    Google Scholar 

  12. Li, T., Wang, Y.: Deployment dynamic analysis of deployable antennas considering thermal effect. Aerosp. Sci. Technol. 13(4–5), 210–215 (2009)

    Article  Google Scholar 

  13. Orzechowski, G.: Analysis of beam elements of circular cross section using the absolute nodal coordinate formulation. Arch. Mech. Eng. 59(3), 283–296 (2012)

    Article  MathSciNet  Google Scholar 

  14. Khude, N.N.: Efficient simulation of flexible body systems with frictional contact/impact. Dissertations and theses, Gradworks (2015)

  15. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)

    Article  MATH  Google Scholar 

  16. Kübler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations using absolute nodal coordinates for isoparametric solid brick elements. In: ASME 2003 international design engineering technical conferences and computers and in-formation in engineering conference, pp. 31–52 (2003)

  17. Pappalardo, C.M., Zhang, Z.G., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91, 2171–2202 (2018)

    Article  Google Scholar 

  18. Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89, 1019–1045 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karin, N., Peter, G., Johannes, G.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 92–110 (2013)

    Google Scholar 

  20. Hussein, B.A., Sugiyama, H., Shabana, A.A.: Coupled deformation modes in the large deformation finite element analysis: problem definition. ASME J. Comput. Nonlinear Dyn. 2, 146–154 (2007)

    Article  Google Scholar 

  21. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computer and Information in Engineering Conference (DETC2005–85104), pp. 24–28. Long Beach (2005).

  22. Nachbagauer, K., Pechstein, A.S., Irschik, H., et al.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  MATH  Google Scholar 

  23. Nachbagauer, K., Gruber, P., Gerstmayr, J.: A 3D shear deformable finite element based on the absolute nodal coordinate formulation. Multibody dynamics. Comput. Methods Appl. Sci. 28, 77–96 (2013)

    Article  MATH  Google Scholar 

  24. Dufva, K., Sopanen, J., Mikkola, A., et al.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280(3), 719–738 (2005)

    Article  Google Scholar 

  25. Gantes, C.: Analytical predictions of the snap-through characteristics of deployable structures. Trans. Built Environ. 21, 83–92 (1996)

    Google Scholar 

  26. Gantes, C., Konitopoulou, E.: Geometric design of arbitrarily curved bi-stable deployable arches with discrete joint size. Int. J. Solids Struct. 41, 5517–5540 (2004)

    Article  MATH  Google Scholar 

  27. Chen, Y., You, Z., Tarnai, T.: Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 42(8), 2287–2301 (2005)

    Article  MATH  Google Scholar 

  28. Li, Y.Y., Wang, Z.L., Wang, C., et al.: Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance. Acta Astronaut. 142, 138–151 (2018)

    Article  Google Scholar 

  29. Li, Y.Y., Wang, C., Huang, W.H.: Rigid-flexible-thermal analysis of planar composite solar array with clearance joint considering torsional spring, latch mechanism and attitude controller. Nonlinear Dyn. 96, 2031–2053 (2019)

    Article  Google Scholar 

  30. Otsuka, K., Makihara, K.: ANCF-ICE beam element for modeling highly flexible and deployable aerospace structures. In: AIAA Scitech 2019 Forum, 2019, San Diego, California

  31. Liu, C., Tian, Q., Yan, D., et al.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nature 521(7553), 460–466 (2015)

    Article  Google Scholar 

  33. Hachem, C., Hanaor, A., Karni, E.: Evaluation of biological deployable systems. Int. J. Space Struct. 20(4), 189–200 (2005)

    Article  Google Scholar 

  34. Lederman, G., Zhong, Y., Glišić, B.: A novel deployable tied arch bridge. Eng. Struct. 70(3), 1–10 (2014)

    Article  Google Scholar 

  35. Hu, H.Y., Tian, Q., Zhang, W., et al.: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshed. Adv. Mech. 43, 390–414 (2013)

    Google Scholar 

  36. Li, B., Wang, S.M., Zhi, C.J., et al.: Analytical and numerical study of the buckling of planar linear array deployable structures based on scissor-like element under its own weight. Mech. Syst. Signal Process. 83, 474–488 (2017)

    Article  Google Scholar 

  37. Li, B., Wang, S.M., Tan, U.-X.: Buckling analysis of planar linear uniform deployable structures consisting of scissor-like element in space under compression. Sci China Technol. Sci. (2020). https://doi.org/10.1007/s11431-020-1569-6

    Article  Google Scholar 

  38. Friedman, N.: Investigation of highly flexible, deployable structures: review, modelling, control, experiments and application. In: Budapest University of Technology and Economics (BME). Budapest: Hungary (2012)

  39. Li, B., Wang, S.M., Yuan, R., et al. Dynamic characteristics of planar linear array deployable structure based on scissor-like element with joint clearance using a new mixed contact force model. In: Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989–1996, pp. 203–210, 0954406215607903 (2016)

  40. Li, B., Wang, S.M., Makis, V., et al.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with differently located revolute clearance joints. In: Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989–1996, pp. 203–210, 095440621771027 (2017)

  41. Sun, Y., Wang, S., Li, J., et al.: Mobility analysis of the deployable structure of SLE based on screw theory. Chin. J. Mech. Eng. 26(4), 793–800 (2013)

    Article  Google Scholar 

  42. Yildiz, K., Lesieutre, G.A.: Effective beam stiffness properties of n-strut cylindrical tensegrity towers. AIAA J. 57(5), 2185–2194 (2019)

    Article  Google Scholar 

  43. Peng, Q.A., Wang, S.M., Zhi, C., et al.: A new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements. Chin. J. Mech. Eng. 32(1), 1–10 (2019)

    Article  Google Scholar 

  44. Peng, Q.A., Wang, S.M., Li, B., et al.: A novel thermo-flexible coupled dynamics analysis method of planar deployable structures in the deploying process. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1989–1996 233(17), 6089–6098 (2019)

    Article  Google Scholar 

  45. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable bear for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  46. Daniel, G.-V., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007)

    MATH  Google Scholar 

  47. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 614–621 (2001)

    Article  Google Scholar 

  48. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2001)

    Article  Google Scholar 

  49. Shabana, A.A.: Coupling between shear and bending in the analysis of beam problems: planar case. J. Sound Vib. 419, 510–525 (2018)

    Article  Google Scholar 

  50. Wang, W.T.: Modeling and Analysis of the Double-Link Flexible Manipulator Based on the Absolute Nodal Coordinate Formulation. X’ian University of Technology, X’ian (2015)

    Google Scholar 

  51. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Article  Google Scholar 

  52. Cavalieri, F.J., Cardona, A.: Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mech. Mach. Theory 121, 335–354 (2018)

    Article  Google Scholar 

  53. Li, Y., Luo, Z., Liu, Z., et al.: Nonlinear dynamic behaviors of a bolted joint rotor system supported by ball bearings. Arch. Appl. Mech. 89(7), 2381–2395 (2019)

    Article  Google Scholar 

  54. Askari, E., Flores, P.: Coupling multi-body dynamics and fluid dynamics to model lubricated spherical joints. Arch. Appl. Mech. 90(3), 2091–2111 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 51175422) and Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JQ-753).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoqun Duan or U-Xuan Tan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Duan, C., Peng, Q. et al. Parametric study of planar flexible deployable structures consisting of Scissor-like elements using a novel multibody dynamic analysis methodology. Arch Appl Mech 91, 4517–4537 (2021). https://doi.org/10.1007/s00419-021-01997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01997-z

Keywords

Navigation