Skip to main content

A 3D Shear Deformable Finite Element Based on the Absolute Nodal Coordinate Formulation

  • Chapter
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 28))

Abstract

The absolute nodal coordinate formulation (ANCF) has been developed for the modeling of large deformation beams in two or three dimensions. The absence of rotational degrees of freedom is the main conceptual difference between the ANCF and classical nonlinear beam finite elements that can be found in literature. In the present approach, an ANCF beam finite element is presented, in which the orientation of the cross section is parameterized by means of slope vectors. Based on these slope vectors, a thickness as well as a shear deformation of the cross section is included. The proposed finite beam element is investigated by an eigenfrequency analysis of a simply supported beam. The high frequencies of thickness modes are of the same magnitude as the shear mode frequencies. Therefore, the thickness modes do not significantly influence the performance of the finite element in dynamical simulations. The lateral buckling of a cantilevered right-angle frame under an end load is investigated in order to show a large deformation example in statics, as well as a dynamic application. A comparison to results provided in the literature reveals that the present element shows accuracy and high order convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html.

References

  1. Argyris, J.H., Balmer, H., Doltsinis, J.St., Dunne, P.C., Haase, M., Kleiber, M., Malejannakis, G.A., Mlejenek, J.P., Muller, M., Scharpf, D.W.: Finite element method—the natural approach. Comput. Methods Appl. Mech. Eng. 17–18, 1–106 (1979)

    Article  Google Scholar 

  2. Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  4. Dmitrochenko, O.: A new finite element of thin spatial beam in absolute nodal coordinate formulation. In: Proceedings of Multibody Dynamics, ECCOMAS Thematic Conference, Madrid, Spain (2005)

    Google Scholar 

  5. Gams, M., Planinc, I., Saje, M.: The strain-based beam finite elements in multibody dynamics. J. Sound Vib. 305, 194–210 (2007)

    Article  Google Scholar 

  6. García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    Article  MATH  Google Scholar 

  7. Gerstmayr, J., Irschik, H.: On the appropriateness of the absolute nodal coordinate formulation for nonlinear problems of rods. In: Proceedings of the 4th European Conference on Structural Control (4ECSC), vol. 1 (2008)

    Google Scholar 

  8. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)

    Article  Google Scholar 

  9. Gerstmayr, J., Irschik, H.: A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Math. Comput. Model. Dyn. Syst. 17, 19–29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerstmayr, J., Matikainen, M.K.: Analysis of stress and strain in the absolute nodal coordinate formulation. Mech. Based Des. Struct. Mach. 34, 409–430 (2006)

    Article  Google Scholar 

  11. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122, 11–26 (1995)

    Article  MATH  Google Scholar 

  13. Kerkkänen, K.S., Sopanen, J.T., Mikkola, A.M.: A linear beam finite element based on the absolute nodal coordinate formulation. J. Mech. Des. 127, 621–630 (2005)

    Article  Google Scholar 

  14. Nachbagauer, K., Gerstmayr, J.: Nonlinear dynamic analysis of three-dimensional shear deformable ANCF beam finite elements. In: Proceedings of the 2nd Joint International Conference on Multibody System Dynamics, Stuttgart, Germany, May 29–June 1, 2012

    Google Scholar 

  15. Nachbagauer, K., Gruber, P., Gerstmayr, J.: A 3D shear deformable finite element based on the absolute nodal coordinate formulation. In: Samin, J.C., Fisette, P. (eds.) Proceedings of the Multibody Dynamics 2011, ECCOMAS Thematic Conference, Brussels, Belgium, 4–7 July 2011

    Google Scholar 

  16. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8, 021004 (2013)

    Article  Google Scholar 

  17. Nachbagauer, K., Gruber, P., Vetyukov, Y., Gerstmayr, J.: A spatial thin beam finite element based on the absolute nodal coordinate formulation without singularities. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2011, Washington, DC, USA, Paper No. DETC2011/MSNDC-47732 (2011)

    Google Scholar 

  18. Nachbagauer, K., Pechstein, A., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  MATH  Google Scholar 

  19. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20, 51–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics 5, 011010 (2010)

    Article  Google Scholar 

  21. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  23. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    Article  MATH  Google Scholar 

  24. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  25. Sugiyama, H., Gerstmayr, J., Shabana, A.A.: Deformation modes in the finite element absolute nodal coordinate formulation. J. Sound Vib. 298, 1129–1149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. IMechE, Part K: J. Multi-body Dyn. 221, 219–231 (2007)

    Google Scholar 

  27. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  28. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements. J. Mech. Des. 123, 606–621 (2001)

    Article  Google Scholar 

  29. Zupan, D., Saje, M.: Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput. Methods Appl. Mech. Eng. 192, 5209–5248 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

K. Nachbagauer and P. Gruber acknowledge support from the Austrian Science Funds (FWF): I337-N18, J. Gerstmayr from the K2-Comet Austrian Center of Competence in Mechatronics (ACCM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Nachbagauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nachbagauer, K., Gruber, P., Gerstmayr, J. (2013). A 3D Shear Deformable Finite Element Based on the Absolute Nodal Coordinate Formulation. In: Samin, JC., Fisette, P. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5404-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5404-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5403-4

  • Online ISBN: 978-94-007-5404-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics