Skip to main content
Log in

Nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with rub-impact

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with rub-impact are investigated. A novel framework is proposed, in which the sophisticated geometrical structure is considered by finite solid element method and efficient model order reduction is applied to the model. The validity and efficiency of the reduced-order model are verified through critical speed and eigen problems. Its stable and unstable solutions are calculated by means of the assembly technique and the multiple harmonic balance method combined with the alternating frequency/time domain technique (MHB–AFT). The accurate frequency amplitudes are obtained accordingly for each harmonic component. The stabilities of the solutions are checked by the Floquet theory. Through the numerical computations, some complex nonlinear phenomena, such as combined frequency vibration, hysteresis, and resonant peak shifting, are discovered when the rub-impact occurs. The results also show that the control parameters of mass eccentricity, rub-impact stiffness, and rotational speed ratio make significant but different influences on the dynamical characteristics of the system. Therefore, a key innovation of this paper is the marriage of a hybrid modeling method—accurate modeling technique combined with model order reduction and solution method—highly efficient semi-analytic method of MHB–AFT. The proposed framework is benefit for parametric study and provides a better understanding of the nonlinear dynamical behaviors of the real complicated dual-rotor aero-engine with rub-impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Chen, Y.S., Zhang, H.B.: Review and prospect on the research of dynamics of complete aero-engine systems. Hangkong Xuebao/acta Aeronautica Et Astronautica Sinica 32(8), 1371–1391 (2011)

    Google Scholar 

  2. Goldman, P., Muszynska, A.: Rotor to stator, rub-related, thermal/mechanical effects in rotating machinery. Chaos Soliton Fractals 5(9), 1579–1601 (1995)

    Article  Google Scholar 

  3. Chu, F., Zhang, Z.: Bifurcation and chaos in a rub-impact Jeffcott rotor system. J. Sound Vib. 210(1), 1–18 (1998)

    Article  Google Scholar 

  4. Zhang, L., Ma, Z., Song, B.: Dynamic characteristics of a rub-impact rotor-bearing system for hydraulic generating set under unbalanced magnetic pull. Arch. Appl. Mech. 83(6), 817–830 (2013)

    Article  MATH  Google Scholar 

  5. Zhang, L., Ma, Z., Wu, Q.: Vibration analysis of coupled bending-torsional rotor-bearing system for hydraulic generating set with rub-impact under electromagnetic excitation. Arch. Appl. Mech. 86(9), 1665–1679 (2016)

    Article  Google Scholar 

  6. Diken, H.: Nonlinear vibration analysis and sub-harmonic whirl frequencies of the Jeffcott rotor model. J. Sound Vib. 243(1), 117–125 (2001)

    Article  Google Scholar 

  7. Jiang, J., Ulbrich, H.: Stability analysis of sliding whirl in a nonlinear Jeffcott rotor with cross-coupling stiffness coefficients. Nonlinear Dyn. 24(3), 269–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shen, X.Y., Jia, J., Zhao, M.: Nonlinear analysis of a rub-impact rotor-bearing system with initial permanent rotor bow. Arch. Appl. Mech. 78(3), 225–240 (2008)

    Article  MATH  Google Scholar 

  9. Shang, Z., Jiang, J., Hong, L.: The global responses characteristics of a rotor/stator rubbing system with dry friction effects. J. Sound Vib. 330(10), 2150–2160 (2011)

    Article  Google Scholar 

  10. Zhang, H.B., Chen, Y.S.: Bifurcation analysis on full annular rub of a nonlinear rotor system. Sci. China Technol. Sci. 54(8), 1977–1985 (2011)

    Article  MATH  Google Scholar 

  11. Chen, G.: A new rotor-ball bearing-stator coupling dynamics model for whole aero-engine vibration. J. Vib. Acoust. 131(6), 1980–1998 (2009)

    Google Scholar 

  12. Rouch, R.W.S.E.: Modeling rotating shafts using axisymmetric solid finite elements with matrix reduction. J Vib. Acoust. 115(4), 484–489 (1993)

    Article  Google Scholar 

  13. Kozhenkov, A.A., Deitch, R.S., Kozhenkov, A.A.: Three-dimensional finite element simulation of nonlinear dynamic rotor systems of a turbocharger. J Vib. Acoust. 130(3), 263–269 (2008)

    Article  Google Scholar 

  14. Ma, W.M., Wang, J.J., Wang, Z.: Frequency and stability analysis method of asymmetric anisotropic rotor-bearing system based on three-dimensional solid finite element Method. J. Eng. Gas Turb. Power-T ASME 137(10), 102502:1–9 (2015)

    Google Scholar 

  15. Khot, S.M., Yelve, N.P.: Modeling and response analysis of dynamic systems by using ANSYS (c) and MATLAB (c). J. Vib. Control. 17(6), 953–958 (2011)

    Article  MATH  Google Scholar 

  16. Holl, H.J.: A modal-based substructure method applied to nonlinear rotordynamic systems. Int. J. Rotating Mach. 2009, 1–8 (2009)

  17. Batailly, A., Legrand, M., Cartraud, P.: Assessment of reduced models for the detection of modal interaction through rotor stator contacts. J. Sound Vib. 329(26), 5546–5562 (2010)

    Article  Google Scholar 

  18. Legrand, M., Batailly, A., Magnain, B.: Full three-dimensional investigation of structural contact interactions in turbo machines. J. Sound Vib. 331(11), 2578–2601 (2012)

    Article  Google Scholar 

  19. Iwatsubo, T., Shimbo, K., Kawamura, S.: Nonlinear vibration analysis of a rotor system using component mode synthesis method. Arch. Appl. Mech. 72(11), 843–855 (2003)

    MATH  Google Scholar 

  20. Li, D.F., Gunter, E.J.: Component mode synthesis of large rotor systems. J. Eng. Gas Turb. Power-T ASME 104(3), 552–560 (1981)

    Article  Google Scholar 

  21. Yang, X.G., Luo, G.H., Yuan, P.: Application and verification of the modal synthesis method in dual-rotor system modeling. Mech. Sci. Technol. Aerosp. Eng. 33(10), 1450–1454 (2014)

    Google Scholar 

  22. Kim, Y.B., Choi, S.K.: A multiple harmonic balance method for the internal resonant vibration of a nonlinear Jeffcott rotor. J Sound Vib. 208(5), 745–761 (1997)

    Article  Google Scholar 

  23. Guskov, M., Sinou, J.J., Thouverez, F.: Multi-dimensional harmonic balance applied to rotor dynamics. Mech. Res. Commun. 35(8), 537–545 (2008)

    Article  MATH  Google Scholar 

  24. Zucca, S., Firrone, C.M.: Nonlinear dynamics of mechanical systems with friction contacts: coupled static and dynamic multi-harmonic balance method and multiple solutions. J. Sound Vib. 333(3), 916–926 (2014)

    Article  Google Scholar 

  25. Pušenjak, R.R., Oblak, M.M.: Incremental harmonic balance method with multiple time variables for dynamical systems with cubic nonlinearities. Int. J. Numer. Method Eng. 59(2), 255–292 (2004)

    Article  MATH  Google Scholar 

  26. Akgün, D., Cankaya, I.: Frequency response investigations of multi-input multi-output nonlinear systems using automated symbolic harmonic balance method. Nonlinear Dyn. 61(4), 803–818 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hou, L., Chen, Y., Fu, Y.: Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 1–21 (2017)

    Article  Google Scholar 

  28. Liu, L., Cao, D.Q., Sun, S.P.: Dynamic characteristics of a disk-drum-shaft rotor system with rub-impact. Nonlinear Dyn. 80(1–2), 1017–1038 (2015)

    Article  Google Scholar 

  29. Bampton, M.C.C., Jr, R.R.C.: Coupling of substructures for dynamic analyses. AIAA J. 4(7), 1313–1319 (2015)

    Article  MATH  Google Scholar 

  30. Niordson, F.I.: Dynamics of Rotors. Springer, Berlin (2013)

    Google Scholar 

  31. Das, A.S., Dutt, J.K.: Reduced model of a rotor-shaft system using modified SEREP. Mech. Res. Commun. 35(6), 398–407 (2008)

    Article  MATH  Google Scholar 

  32. Sun, C.Z., Chen, Y.S., Hou, L.: Steady-state response characteristics of a dual-rotor system induced by rub-impact. Nonlinear Dyn. 86, 91–105 (2016)

    Article  Google Scholar 

  33. Lam, W.F., Morley, C.T.: Arc-length method for passing limit points in structural calculation. J. Struct Eng-ASCE 118(1), 169–185 (1992)

    Article  Google Scholar 

  34. Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, New York (2010)

    Book  MATH  Google Scholar 

  35. Huang, X.D., Zeng, Z.G., Ma, Y.N.: The Theory and Methods for Nonlinear Numerical Analysis. Wuhan University Press, Wuhan (2004)

    Google Scholar 

  36. Chen, Y.S.: Nonlinear Vibrations. Higher Education Press, Beijing (2002)

    Google Scholar 

  37. Hsu, C.S.: Impulsive parametric excitation: theory. J. Appl. Mech. 39(2), 551–558 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hsu, C.S., Cheng, W.H.: Applications of the theory of impulsive parametric excitation and new treatments of general parametric excitation problems. J. Appl. Mech. 40(1), 78–86 (1973)

    Article  MATH  Google Scholar 

  39. Wang, S.J., Liao, M.F., Jiang, Y.F.: Experimental study on local rub-impact fault of counter-rotating dual-rotor. J. Propuls. Technol. 34(1), 31–36 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports from the National Key Basic Research Program (973 Program) of China (Grant No. 2015CB057400), the National Natural Science Foundation of China (Grant No. 11602070), and China Postdoctoral Science Foundation (Grant No. 2016M590277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Chen, Y. & Hou, L. Nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with rub-impact. Arch Appl Mech 88, 1305–1324 (2018). https://doi.org/10.1007/s00419-018-1373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1373-y

Keywords

Navigation