Skip to main content
Log in

Application of the HB–AFT method to the primary resonance analysis of a dual-rotor system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the primary resonance analysis of a dual-rotor system having two rotor unbalance excitations of different rotating speeds and being connected by an inter-shaft ball bearing. Due to the complex excitation condition and the complicated nonlinear bearing forces of the inter-shaft bearing, the general analytical methods, e.g., the multiple scales method or the harmonic balance method, are failed to give the theoretical solutions. Thus, the harmonic balance–alternating frequency/time domain (HB–AFT) method is formulated to deal with this problem. The basic idea of the method is using the inverse discrete Fourier transform and the discrete Fourier transform, instead of the direct analytical relationship between the supposed solutions of the system and the nonlinear forces, to construct the harmonic expressions of the nonlinear forces, which is the so-called alternating frequency/time domain technique. By using the HB–AFT method, therefore, a Newton– Raphson iteration procedure can be performed to demonstrate the approximate solutions of the system. Accordingly, the frequency responses of the system affected by some critical parameters, such as rotating speed ratio, unbalances of both the inner and outer rotors, and clearance of the inter-shaft bearing, are analyzed, respectively. A variety of phenomena including double resonance peaks, biperiodic and quasi-periodic behaviors, and resonance hysteresis phenomenon are obtained, which are discussed in detail through diagrams for separated frequency responses with different frequency components and rotors’ orbits for different combinations of system parameters. Most prominently, for a relatively small unbalance of rotor as well as a relatively large clearance of the inter-shaft bearing, the resonance hysteresis phenomena are more obvious. The results obtained are also compared with the direct numerical simulation results, and the comparisons show good agreements. In addition, the methodology formulated in this paper is a general approach, which can be applied to other engineering systems with multi-frequency excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillation. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady state response of nonlinear dynamic systems. ASME J. Appl. Mech. 56, 149–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kim, Y.B., Noah, S.T.: Stability and bifurcation analysis of oscillators with piecewise-linear characteristics: a general approach. ASME J. Appl. Mech. 58, 545–553 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kim, Y.B., Noah, S.T.: Periodic response and crisis behavior for a system with piecewise-smooth non-linearities. Int. J. Nonlinear Mech. 27, 833–843 (1992)

    Article  MATH  Google Scholar 

  5. Kim, Y.B., Noah, S.T.: Bifurcation analysis for a modified Jeffcott rotor with a bearing clearance. Nonlinear Dyn. 1, 221–241 (1991)

    Article  Google Scholar 

  6. Kim, Y.B., Noah, S.T.: Response and bifurcation analysis of a MDOF rotor system with a strong nonlinearity. Nonlinear Dyn. 2, 215–234 (1991)

    Article  Google Scholar 

  7. Kim, Y.B., Noah, S.T.: Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. J. Sound Vib. 190, 239–253 (1996)

    Article  Google Scholar 

  8. Kim, Y.B., Choi, S.K.: A multiple harmonic balance method for the internal resonant vibration of a non-linear Jeffcott rotor. J. Sound Vib. 208, 745–761 (1997)

    Article  Google Scholar 

  9. Xie, G., Lou, J.Y.K.: Alternating frequency/coefficient (AFC) technique in the harmonic balance method. Int. J. Nonlinear Mech. 31, 517–529 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, Q.L., Kahraman, A.: Period-one motions of a mechanical oscillator with periodically time-varying, piecewise-nonlinear stiffness. J. Sound Vib. 284, 893–914 (2005)

    Article  Google Scholar 

  11. Legrand, M., Roques, S., Pierre, C., Peseux, B., Cartraud, P.: n-dimensional Harmonic Balance Method extended to non-explicit nonlinearities. Eur. J. Comput. Mech. 15, 269–280 (2006)

    MATH  Google Scholar 

  12. Guskov, M., Sinou, J.J., Thouverez, F.: Multi-dimensional harmonic balance applied to rotor dynamics. Mech. Res. Commun. 35, 537–545 (2008)

    Article  MATH  Google Scholar 

  13. Groll, G.V., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241, 223–233 (2001)

    Article  Google Scholar 

  14. Rook, T.: An alternate method to the alternating time-frequency method. Nonlinear Dyn. 27, 327–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dimitriadis, G.: Continuation of higher-order harmonic balance solutions for nonlinear aeroelastic systems. J. Aircr. 45, 523–537 (2008)

    Article  Google Scholar 

  16. Jaumouille, V., Sinou, J.J., Petitjean, B.: An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems—application to bolted structures. J. Sound Vib. 329, 4048–4067 (2010)

    Article  Google Scholar 

  17. Grolet, A., Thouverez, F.: On a new harmonic selection technique for harmonic balance method. Mech. Syst. Signal Process. 30, 43–60 (2012)

    Article  Google Scholar 

  18. Didier, J., Sinou, J.J., Faverjon, B.: Nonlinear vibrations of a mechanical system with non-regular nonlinearities and uncertainties. Commun. Nonlinear Sci. Numer. Simul. 18, 3250–3270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Article  Google Scholar 

  20. Valipour, M., Sefidkouhi, M.A.G., Eslamian, S.: Surface irrigation simulation models: a review. Int. J. Hydrol. Sci. Technol. 5, 51–70 (2015)

    Article  Google Scholar 

  21. Woo, K.C., Rodger, A.A., Neilson, R.D., Wiercigroch, M.: Application of the harmonic balance method to ground moling machines operating in periodic regimes. Chaos Solitons Fractals 11, 2515–2525 (2000)

    Article  MATH  Google Scholar 

  22. Chen, J.J., Yang, B.D., Meng, C.H.: Periodic forced response of structures having three-dimensional frictional constraints. J. Sound Vib. 229, 775–792 (2000)

    Article  Google Scholar 

  23. Sinou, J.J., Thouverez, F., Jezequel, L.: Non-linear stability analysis of a complex rotor/stator contact system. J. Sound Vib. 278, 1095–1129 (2004)

    Article  Google Scholar 

  24. Sinou, J.J., Lees, A.W.: The influence of cracks in rotating shafts. J. Sound Vib. 285, 1015–1037 (2005)

    Article  Google Scholar 

  25. Sinou, J.J., Lees, A.W.: A non-linear study of a cracked rotor. Eur. J. Mech. A Solids 26, 152–170 (2007)

    Article  MATH  Google Scholar 

  26. Laxalde, D., Thouverez, F., Sinou, J.J., Lombard, J.P.: Qualitative analysis of forced response of blisks with friction ring dampers. Eur. J. Mech. A Solids 26, 676–687 (2007)

    Article  MATH  Google Scholar 

  27. Saito, A., Castanier, M.P., Pierre, C., Poudou, O.: Efficient nonlinear vibration analysis of the forced response of rotating cracked blades. ASME J. Comput. Nonlinear Dyn. 4, 011005 (2008)

    Article  Google Scholar 

  28. Sinou, J.J.: Non-linear dynamics and contacts of an unbalanced flexible rotor supported on ball bearings. Mech. Mach. Theory 44, 1713–1732 (2009)

    Article  MATH  Google Scholar 

  29. Villa, C., Sinou, J.J., Thouverez, F.: Investigation of a rotor-bearing system with bearing clearances and hertz contact by using a harmonic balance method. J. Braz. Soc. Mech. Sci. Eng. 29, 14–20 (2007)

    Article  Google Scholar 

  30. Villa, C., Sinou, J.J., Thouverez, F.: Stability and vibration analysis of a complex flexible rotor bearing system. Commun. Nonlinear Sci. Numer. Simul. 13, 804–821 (2008)

    Article  Google Scholar 

  31. Zhang, Z.Y., Chen, Y.S.: Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Appl. Math. Mech. Engl. 35, 423–436 (2014)

    Article  MathSciNet  Google Scholar 

  32. Fu, Y.Q., Chen, Y.S., Hou, L., Li, Z.G.: A counter-rotating dual-rotor system’s hysteretic characteristics. J. Vib. Shock 34, 23–27 (2015)

    Google Scholar 

  33. Luo, G.H., Hu, X., Yang, X.G.: Nonlinear dynamic performance analysis of counter-rotating dual-rotor system. J. Vib. Eng. 22, 268–273 (2009)

    Google Scholar 

  34. Chen, S.T., Wu, Z.Q.: Rubbing vibration analysis for a counter-rotating dual-rotor system. J. Vib. Shock 31, 142–147 (2012)

    Google Scholar 

  35. Hou, L., Chen, Y.S.: Dynamical simulation and load control of a Jeffcott rotor system in Herbst maneuvering flight. J. Vib. Control 22, 412–425 (2016)

    Article  MathSciNet  Google Scholar 

  36. Han, Q.K., Chu, F.L.: Parametric instability of a rotor-bearing system with two breathing transverse cracks. Eur. J. Mech. A Solids 36, 180–190 (2012)

    Article  Google Scholar 

  37. Chen, G.: Vibration modeling and analysis for dual-rotor aero-engine. J. Vib. Eng. 24, 619–632 (2011)

    Google Scholar 

  38. Chen, Y.S.: Nonlinear Vibrations. Higher Education Press, Beijing (2002)

    Google Scholar 

  39. Zhou, J.Q., Zhu, Y.Y.: Nonlinear Vibrations. Xi’an Jiao Tong University Press, Xi’an (1998)

    Google Scholar 

  40. Friedmann, P., Hammond, C.E.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 11, 1117–1136 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hou, L., Chen, Y.S., Cao, Q.J., Zhang, Z.Y.: Turning maneuver caused response in an aircraft rotor-ball bearing system. Nonlinear Dyn. 79, 229–240 (2015)

  42. Hou, L., Chen, Y.S., Fu, Y.Q., Li, Z.G.: Nonlinear response and bifurcation analysis of a Duffing type rotor model under sine maneuver load. Int. J. Nonlinear Mech. 78, 133–141 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports from China Postdoctoral Science Foundation (Grant No. 2016M590277), the National Natural Science Foundation of China (Grant No. 11602070), and the National Basic Research Program (973 Program) of China (Grant No. 2015CB057400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Chen, Y., Fu, Y. et al. Application of the HB–AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn 88, 2531–2551 (2017). https://doi.org/10.1007/s11071-017-3394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3394-4

Keywords

Navigation