Skip to main content
Log in

On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the Lagrange multipliers corresponding to the intrinsic constraint equations of rigid multibody mechanical systems. The intrinsic constraint equations are algebraic equations that are associated with nonminimal sets of orientation parameters employed for the kinematic representation of large finite rotations. Two coordinate formulations are analyzed in this investigation, namely the reference point coordinate formulation (RPCF) with Euler parameters and the natural absolute coordinate formulation (NACF). While the RPCF with Euler parameters employs the four components of a unit quaternion as rotational coordinates, the NACF directly uses the orthonormal set of nine direction cosines for describing the orientation of a rigid body in the three-dimensional space. In the multibody approaches based on the RPCF with Euler parameters and on the NACF, the use of a nonminimal set of rotational coordinates facilitates a general and systematic formulation of the differential–algebraic equations of motion. Considering the basic equations of classical mechanics, the fundamental problem of constrained motion is formalized and solved in this paper by using a special form of the Udwadia–Kalaba method. By doing so, the Udwadia–Kalaba equations are employed for obtaining closed-form analytical solutions for the Lagrange multipliers associated with the intrinsic constraint equations that appear in the differential–algebraic dynamic equations developed by using the RPCF with Euler parameters and the NACF multibody approaches. Two simple numerical examples support the analytical results found in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheli, F., Pennestri, E.: Cinematica e Dinamica dei Sistemi Multibody, vol. 1. Casa Editrice Ambrosiana, Milano (2006)

    Google Scholar 

  2. Cheli, F., Pennestri, E.: Cinematica e Dinamica dei Sistemi Multibody, vol. 2. Casa Editrice Ambrosiana, Milano (2006)

    Google Scholar 

  3. Wittenburg, J.: Dynamics of Multibody Systems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (2012)

    MATH  Google Scholar 

  5. Magnus, K.: Dynamics of Multibody Systems. Springer, Berlin (1978)

    Book  Google Scholar 

  6. Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New-York (2011). Reprint

    Google Scholar 

  7. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems Volume I: Basic Methods. Allyn and Bacon, Needham (1989)

    Google Scholar 

  8. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  9. Abagnale, C., Cardone, M., Iodice, P., Strano, S., Terzo, M., Vorraro, G.: Theoretical and experimental evaluation of a chain strength measurement system for pedelecs. Eng. Lett. 22(3), 102–108 (2014)

    Google Scholar 

  10. Abagnale, C., Cardone, M., Iodice, P., Strano, S., Terzo, M., Vorraro, G.: Power requirements and environmental impact of a pedelec. A case study based on real-life applications. Environ. Impact Assess. Rev. 53(7), 1–7 (2015)

    Article  Google Scholar 

  11. Iodice, P., Abagnale, C., Cardone, M., Strano, S., Terzo, M., Vorraro, G.: Performance evaluation and environmental analysis of an electrically assisted bicycle under real driving conditions. Proceedings of the ASME 12th Biennial Conference on Engineering Systems Design and Analysis (ESDA2014), vol. 1, Copenhagen, Denmark, June 2527 (2014)

  12. Cammarata, A., Lacagnina, M., Sinatra, R.: Closed-form solutions for the inverse kinematics of the Agile Eye with constraint errors on the revolute joint axes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 317–322 (2016)

  13. Cammarata, A.: Optimized design of a large-workspace 2-DOF parallel robot for solar tracking systems. Mech. Mach. Theory 83, 175–186 (2015)

    Article  Google Scholar 

  14. Sinatra, R., Cammarata, A., Angeles, J.: Kinetostatic and inertial conditioning of the McGill Schnflies-motion generator. Adv. Mech. Eng. Article no. 186203 (2010)

  15. Callegari, M., Gabrielli, A., Cammarata, A., Sinatra, R.: Kinematics and dynamics of a 3-CRU spherical parallel robot. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 8 PART B, pp. 933–941 (2008)

  16. Bestle, D., Seybold, J.: Sensitivity analysis of constrained multibody systems. Arch. Appl. Mech. 62(3), 181–190 (1992)

    MATH  Google Scholar 

  17. Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64(2), 86–98 (1994)

    MATH  Google Scholar 

  18. De Simone, M.C., Russo, S., Rivera, Z.B., Guida, D.: Multibody model of a UAV in presence of wind fields. In: ICCAIRO 2017—International Conference on Control, Artificial Intelligence, Robotics and Optimization, Prague, Czech Republic, 20–22 May 2017 (2017)

  19. Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 565–571 (2017)

    Article  Google Scholar 

  20. Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using arduino. FME Trans. 45(4), 578–584 (2017)

    Article  Google Scholar 

  21. Roberson, R.E.: On the practical use of Euler–Rodrigues parameters in multibody system dynamic simulation. Arch. Appl. Mech. 55(2), 114–123 (1985)

    Google Scholar 

  22. Kadziela, B., Manka, M., Uhl, T., Toso, A.: Validation and optimization of the leaf spring multibody numerical model. Arch. Appl. Mech. 85(12), 1899–1914 (2015)

    Article  Google Scholar 

  23. Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)

    Article  Google Scholar 

  24. Gao, Y., Villecco, F., Li, M., Song, W.: Multi-scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis. Entropy 19(4), 176 (2017)

    Article  Google Scholar 

  25. Formato, A., Ianniello, D., Villecco, F., Lenza, T.L.L., Guida, D.: Design optimization of the plough working surface by computerized mathematical model. Emir. J. Food Agric. 29(1), 36 (2017)

    Article  Google Scholar 

  26. Cammarata, A., Sequenzia, G., Oliveri, S.M., Fatuzzo, G.: Modified chain algorithm to study planar compliant mechanisms. Int. J. Interact. Des. Manuf. 10(2), 191–201 (2016)

    Article  Google Scholar 

  27. Cammarata, A.: Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory 105, 272–284 (2016)

    Article  Google Scholar 

  28. Cammarata, A., Sinatra, R.: On the elastostatics of spherical parallel machines with curved links. Mech. Mach. Sci. 33, 347–356 (2015)

    Article  Google Scholar 

  29. Cammarata, A., Angeles, J., Sinatra, R.: The dynamics of parallel Schonflies motion generators: the case of a two-limb system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223(1), 29–52 (2009)

    Article  Google Scholar 

  30. Shabana, A.A.: Computational Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  31. Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)

    Article  MathSciNet  Google Scholar 

  32. Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  33. Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230(4), 307–328 (2016)

    Google Scholar 

  34. Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015)

    Google Scholar 

  35. Strano, S., Terzo, M.: A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60–61, 715–726 (2015)

    Article  Google Scholar 

  36. Strano, S., Terzo, M.: A multi-purpose seismic test rig control via a sliding mode approach. Struct. Control Health Monit. 21(8), 1193–1207 (2014)

    Article  Google Scholar 

  37. Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(8), 081010 (2017)

    Article  Google Scholar 

  38. Pappalardo, C.M., Guida, D.: Control of nonlinear vibrations using the adjoint method. Meccanica 52(11–12), 2503–2526 (2017)

  39. Shabana, A.A.: Computational Dynamics, 3rd edn. Wiley, New York (2010)

    Book  MATH  Google Scholar 

  40. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. J. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 230(1), 1–16 (2016)

    Google Scholar 

  42. Cammarata, A., Calio, I., D’Urso, D., Greco, A., Lacagnina, M., Fichera, G.: Dynamic Stiffness model of spherical parallel robots. J. Sound Vib. 384, 312–324 (2016)

    Article  Google Scholar 

  43. Callegari, M., Cammarata, A., Gabrielli, A., Ruggiu, M., Sinatra, R.: Analysis and design of a spherical micromechanism with flexure hinges. J. Mech. Des. Trans. ASME 131(5), 0510031–05100311 (2009)

    Article  Google Scholar 

  44. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 1–7 (2012)

    Google Scholar 

  45. Nachbagauer, K., Gerstmayr, : Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to buckling and nonlinear dynamic example. J. Comput. Nonlinear Dyn. 9(1), 1–8 (2013)

    Google Scholar 

  46. Cammarata, A., Condorelli, D., Sinatra, R.: An algorithm to study the elastodynamics of parallel kinematic machines with lower kinematic pairs. J. Mech. Robot. 5(1). Article no. 011004 (2012)

  47. Cammarata, A., Sinatra, R.: Elastodynamic optimization of a 3T1R parallel manipulator. Mech. Mach. Theory 73, 184–196 (2014)

    Article  Google Scholar 

  48. Shabana, A.A.: Definition of ANCF finite elements. ASME J. Comput. Nonlinear Dyn. 10(5), 1–5 (2015)

    MathSciNet  Google Scholar 

  49. Zheng, Y., Shabana, A.A.: Planar ANCF/CRBF shear deformable beam. ASME J. Comput. Nonlinear Dyn. 87, 1031–1043 (2017)

    Article  Google Scholar 

  50. He, G., Patel, M.D., Shabana, A.A.: Integration of localized surface geometry in fully parameterized ANCF finite elements. J. Comput. Methods Appl. Mech. Eng. 313, 966–985 (2017)

    Article  MathSciNet  Google Scholar 

  51. Hu, W., Tian, Q., Hu, H.Y.: Dynamics simulation of the liquid-filled flexible multibody system via the absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)

    Article  MathSciNet  Google Scholar 

  52. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011)

    Article  MATH  Google Scholar 

  53. Liu, C., Tian, Q., Yan, D., Hu, H.Y.: Dynamic analysis of membrane systems undergoing overall motions, large deformations, and wrinkles via thin shell elements of ANCF. J. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 1–12 (2017)

    Google Scholar 

  55. Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. ASME J. Comput. Nonlinear Dyn. 12(3), 1–13 (2017)

    Google Scholar 

  56. Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. ASME J. Comput. Nonlinear Dyn. 11(5), 1–15 (2016)

    Google Scholar 

  57. Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2007)

    Book  MATH  Google Scholar 

  58. Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. J. Nonlinear Dyn. 32, 71–92 (2003)

  59. Nikravesh, P.E., Chung, I.S.: Application of Euler parameters to the dynamic analysis of three-dimensional constrained mechanical systems. J. Mech. Des. 104(4), 785–791 (1982)

    Article  Google Scholar 

  60. Nikravesh, P.E.: An overview of several formulations for multibody dynamics. In: Talaba, D., Roche, T.(eds.) Product Engineering, pp. 189–226. Springer, Dordrecht (2004)

  61. Pappalardo, C.M.: Modelling rigid multibody systems using natural absolute coordinates. J. Mech. Eng. Ind. Des. 3(1), 24–38 (2014)

    MathSciNet  Google Scholar 

  62. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Garcia de Jalon, J.G.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18(1), 15–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Garcia de Jalon, J.G., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)

    Article  MATH  Google Scholar 

  65. Garcia de Jalon, J.G., Unda, J., Avello, A., Jimenez, J.M.: Dynamic analysis of three-dimensional mechanisms in natural coordinates. J. Mech. Transm. Autom. Des. 109(4), 460–465 (1987)

    Article  MATH  Google Scholar 

  66. Uhlar, S., Betsch, P.: A rotationless formulation of multibody dynamics: modeling of screw joints and incorporation of control constraints. Multibody Syst. Dyn. 22(1), 69–95 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. Betsch, P., Sanger, N.: A nonlinear finite element framework for flexible multibody dynamics: rotationless formulation and energy-momentum conserving discretization. Multibody Dyn. Comput. Methods Appl. 12, 119–141 (2009)

    MathSciNet  MATH  Google Scholar 

  68. Udwadia, F.E.: Inverse problem of Lagrangian mechanics for classically damped linear multi-degrees-of-freedom systems. J. Appl. Mech. 83(10), 104501 (2016)

    Article  Google Scholar 

  69. Udwadia, F.E.: Constrained motion of hamiltonian systems. J. Nonlinear Dyn. 84, 1135–1145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. J. Numer. Algebra Control Optim. 3(3), 425–443 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  72. Udwadia, F.E., Koganti, P.B.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82, 547–562 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  73. Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closed-form results. J. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)

    MathSciNet  MATH  Google Scholar 

  74. Udwadia, F.E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81, 1–6 (2014)

    Google Scholar 

  75. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. Lond. Ser. A 462, 2097–2117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. Shabana, A.A.: Euler parameters kinetic singularity. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 228(3), 307–313 (2014)

    Google Scholar 

  77. Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in lagrangian mechanics. Acta Mech. 213(1), 111–129 (2010)

    Article  MATH  Google Scholar 

  78. Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. A 468(2138), 395–414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  79. Udwadia, F.F., Kalaba, R.E.: A new perspective on constrained motion. Proc. Math. Phys. Sci. 439(1906), 407–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  80. Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non Linear Mech. 37(6), 1079–1090 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  81. Kalaba, R.E., Udwadia, F.E.: Equations of motion for nonholonomic, constrained dynamical systems via Gauss’s principle. J. Appl. Mech. 60(3), 662–668 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  82. De Falco, D., Pennestri, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)

    Article  Google Scholar 

  83. Pennestri, E., Valentini, P.P., De Falco, D.: An application of the Udwadia–Kalaba dynamic formulation to flexible multibody systems. J. Franklin Inst. 347(1), 173–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  84. Schutte, A.D., Udwadia, F.E.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78(2), 1–11 (2010)

    Google Scholar 

  85. Sherif, K., Nachbagauer, K., Steiner, W.: On the rotational equations of motion in rigid body dynamics when using Euler parameters. J. Nonlinear Dyn. 81, 343–352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  86. Vadali, S.R.: On the Euler parameter constraint. J. Astronaut. Sci. 36, 259–265 (1988)

    Google Scholar 

  87. Mariti, L., Belfiore, N., Pennestri, E., Valentini, P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Meth. Eng. 88(7), 637–656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  88. Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)

    Article  Google Scholar 

  89. Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3(3), 44–51 (2009)

    Google Scholar 

  90. Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3(2), 31–38 (2009)

    Google Scholar 

  91. Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016)

    Google Scholar 

  92. De Simone, M.C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 4483–4491 (2015)

  93. Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009)

    Google Scholar 

  94. Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009)

    Google Scholar 

  95. Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41(4), 285–290 (2013)

    Google Scholar 

  96. Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017)

  97. Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)

  98. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007). Reprint

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pappalardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, C.M., Guida, D. On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Arch Appl Mech 88, 419–451 (2018). https://doi.org/10.1007/s00419-017-1317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1317-y

Keywords

Navigation