We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Strain gradient elasticity and stress fibers

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Since stress fibers have micro-size dimensions, their biomechanical behavior should demand mechanical models conforming with gradient strain deformation theories. In particular, the torsion and the stretching of stress fibers are discussed into the context of strain gradient elasticity theory and their size effects. It is proven for the torsion problem that the torsion moment varies with the axial length of the bar for constant twist angle, whereas for the simple tension problem, the strain is non-uniform along the stress fiber. The proposed theory is supported by experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Article  Google Scholar 

  2. Aifantis E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)

    Article  Google Scholar 

  3. Besser A., Schwarz U.S.: Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction. New J. Phys. 9, 425–452 (2007)

    Article  Google Scholar 

  4. Cosserat E., Cosserat F.: Theories des Corpes Deformables. A. Hermann et Fils, Paris (1909)

    Google Scholar 

  5. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  6. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Matter. 42(2), 475–487 (1994)

    Article  Google Scholar 

  7. Holzapfel G.A., Ogden R.W.: On the bending and stretching elasticityof biopolymer filaments. J. Elast. 104, 319–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huxley A.F.: Musle structure and theories of contraction. Prog. Biophys. Chem. 7, 255–318 (1957)

    Google Scholar 

  9. Janmey P.A., Soren H., Kas J., Lerche D., Maggs A., Sackmann E., Schliva M., Stossel T.P.: The mechanical properties of actin gels. J. Biol. Chem. 269(51), 32503–32513 (1994)

    Google Scholar 

  10. Janmey P.A.: Mechanical properties of cytoskeletal polymers. Curr. Opin. Cell Biol. 2, 4–11 (1991)

    Article  Google Scholar 

  11. Lazopoulos K.A., Pirentis A.: Substrate stretching and reorganization of stress fibers as a finite elasticity problem. Int. J. Solids Struct. 44(25-26), 8285–8296 (2007)

    Article  MATH  Google Scholar 

  12. Lazopoulos K.A., Stamenovic D.: Durotaxis as an elastic stability phenomenon. J. Biomech. 41(6), 1289–1294 (2008)

    Article  Google Scholar 

  13. Mindlin R.D.: Second gradient of strain and surface tension in linear elsticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  14. Morfat M.R.K., Kamm R.D.: Cytoskeletal Mechanics, Models and Measurements. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  15. Peterson L.J., Rajfur Z., Maddox A.S., Freel C.D., Chen Y., Edlund M., Otey C., Burridge K.: Simultaneous stretching and contraction of stress fibers in vivo. Mol. Biol. Cell 15, 3497–3508 (2004)

    Article  Google Scholar 

  16. Stamenovic D., Lazopoulos K.A., Pirentis A., Suki B.: Mechanical stability determines stress fiber and focal adhesion orientation. Cell. Mol. Bioeng. 2(4), 475–485 (2009)

    Article  Google Scholar 

  17. Sternberg E., Knowles J.K.: Minimum energy characterizations of Saint-Venant’s solution for the relaxed Saint-Venent problem. Arch. Ration. Mech. Anal. 21, 89–107 (1966)

    Article  MathSciNet  Google Scholar 

  18. Toupin R.A.: Elastic materials with couple stress. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toupin R.A.: Saint Venant’s principle. Arch. Ration. Mech. Anal. 18, 83–96 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vardoulakis, I.: Linear micro-elasticity. In: Darve, F., Vardoulakis, I. (eds.) Degradations and Instabilities in Geomaterials. CISM/DIGA- sponsored course, Springer, Chapter 4 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Lazopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazopoulos, K.A., Lazopoulos, A.K. Strain gradient elasticity and stress fibers. Arch Appl Mech 83, 1371–1381 (2013). https://doi.org/10.1007/s00419-013-0752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0752-7

Keywords

Navigation