Skip to main content

The Eigenmodes in Isotropic Strain Gradient Elasticity

  • Chapter
  • First Online:
Generalized Continua as Models for Classical and Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 42))

Abstract

We present the spectral decomposition of the isotropic stiffness hexadic that appears in Mindlin’s strain gradient elasticity, where the kinematic variable is the second gradient of the displacement field. It turns out that four distinct eigenmodes appear, two of which are universal for all isotropic strain gradient materials, and two depend on an additional material parameter. With the aid of the harmonic decomposition, general interpretations of the eigenmodes can be given. Further, the material parameters are related to commonly employed special cases, namely the cases tabulated in Neff et al. (Int J Solids Struct 46(25–26):4261–4276, 2009) and isotropic gradient elasticity of Helmholtz type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auffray N, Le Quang H, He Q (2013) Matrix representations for 3d strain-gradient elasticity. J Mech Phys Solids 61(5):1202–1223

    Article  MathSciNet  MATH  Google Scholar 

  • Bertram A (2015) Compendium on gradient materials. http://www.ifme.ovgu.de/fl_veroeffentlichungen.html

  • Bertram A, Forest S (2014) The thermodynamics of gradient elastoplasticity. Contin Mech Thermodyn 26:269–286

    Article  MathSciNet  Google Scholar 

  • dell’Isola F, Sciarra G, Vidoli S (2009) Generalized hooke’s law for isotropic second gradient materials. Proc R Soc Lond A: Math Phys Eng Sci 465(2107):2177–2196

    Google Scholar 

  • Golubitsky M, Stewart I, Schaeffer D (1988) Singularities and groups in bifurcation theory, vol II. Springer, New York

    Book  MATH  Google Scholar 

  • Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik 55:25–55, p 38

    Google Scholar 

  • Kalisch J, Glüge R (2015) Analytical homogenization of linear elasticity based on the interface orientation distribution – a complement to the self-consistent approach. Compos Struct 126:398–416

    Google Scholar 

  • Lazar M, Maugin G (2005) Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int J Eng Sci 43(13):1157–1184

    Article  MathSciNet  MATH  Google Scholar 

  • Lazar M, Maugin G, Aifantis E (2006) On a theory of nonlocal elasticity of bi-helmholtz type and some applications. Int J Solids Struct 43(6):1404–1421

    Article  MathSciNet  MATH  Google Scholar 

  • Liebold C, Müller W (2013) Measuring material coefficients of higher gradient elasticity by using afm techniques and raman-spectroscopy. In: Altenbach H, Forest S, Krivtsov A (eds) Generalized continua as models for materials. Advanced structured materials, vol 22. Springer, Heidelberg, pp 255–271

    Google Scholar 

  • Mindlin R (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin R (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  • Mindlin R, Eshel N (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    Article  MATH  Google Scholar 

  • Neff P, Jeong J, Ramézani H (2009) Subgrid interaction and micro-randomness—novel invariance requirements in infinitesimal gradient elasticity. Int J Solids Struct 46(25–26):4261–4276

    Article  MATH  Google Scholar 

  • Olive M, Auffray N (2014) Symmetry classes for odd-order tensors. Zeitschrift für Angewandte Mathematik und Mechanik 94(5):421–447

    Article  MathSciNet  MATH  Google Scholar 

  • Po G, Lazar M, Seif D, Ghoniem N (2014) Singularity-free dislocation dynamics with strain gradient elasticity. J Mech Phys Solids 68:161–178

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng QS, Zou WN (2000) Irreducible decompositions of physical tensors of high orders. J Eng Math 37(1–3):273–288

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Valuable hints from Patrizio Neff and Markus Lazar are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Glüge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glüge, R., Kalisch, J., Bertram, A. (2016). The Eigenmodes in Isotropic Strain Gradient Elasticity. In: Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-31721-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31721-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31719-9

  • Online ISBN: 978-3-319-31721-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics