Skip to main content
Log in

Comparison of diagonal-implicit, linear-implicit and half-explicit Runge–Kutta methods in non-linear finite element analyses

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The method of vertical lines in the case of quasi-static solid mechanics applying constitutive models of evolutionary-type yields after the spatial discretization by means of finite elements a system of differential-algebraic equations. It is of substantial interest how fast, accurate, and stable such computations can be carried out. Moreover, the questions are how simple the implementation can be done and how susceptible a procedure is to programming errors. In this article, this is investigated for half-explicit Runge–Kutta methods that are applied to small and finite strain viscoelasticity. The advantage of the method is given by a non-iterative scheme on element level. Additionally, it turns out that for models where linear elasticity is one ingredient in the constitutive model, the method leads to only one required LU-decomposition at the beginning of the entire computation, and in each time step, only one back-substitution step has to be carried out. This outperforms current finite element computations. Order investigations of various integration schemes and the automatic step-size behavior are studied. This new proposal is compared to a classical Backward-Euler implementation, high-order stiffly accurate diagonally implicit Runge–Kutta, and recently proposed Rosenbrock-type methods. Advantages and disadvantages of the applied schemes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander R.: Diagonally implicit Runge–Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Analy. 14, 1006–1021 (1977)

    Article  MATH  Google Scholar 

  2. Arnold M.: Half-explicit Runge–Kutta methods with explicit stages for differential-algebraic systems of index 2. BIT 38(3), 415–438 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold M., Strehmel K., Weiner R.: Half-explicit Runge–Kutta methods for semi-explicit differential-algebraic equations of index 1. Numer. Math. 64, 409–431 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beyn W., Thummler V.: Freezing solutions of equivariant evolution equations. SIAM J. Appl. Dyn. Syst. 3(2), 85–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birken, P., Quint. K.J., Hartmann, S., Meister, A.: A time-adaptive fluid-structure interaction method for thermal coupling. Comput. Vis. Sci. (2011). doi:10.1007/s00791-010-0150-4:1-10

  6. Bogacki, P, Shampine, L.F.: A 3(2) pair of Runge–Kutta formulas. Appl. Math. Lett. 2, 321–325 (1989)

    Google Scholar 

  7. Cash J.R.: Diagonally implicit Runge–Kutta formulae with error estimates. J. Inst. Math. Appl. 24, 293–301 (1979)

    Article  MATH  Google Scholar 

  8. Diebels S., Ellsiepen P., Ehlers W.: Error-controlled Runge–Kutta time integration of a viscoplastic hybrid two-phases model. Tech. Mech. 19, 19–27 (1999)

    Google Scholar 

  9. Dormand J.R., Prince P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eckert S., Baaser H., Gross D., Scherf O.: A BDF2 integration method with stepsize control for elastoplasticity. Comput. Mech. 34(5), 377–386 (2004)

    Article  MATH  Google Scholar 

  11. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Doctoral thesis, Institute of Mechanics II, University of Stuttgart, report No. II-3 (1999)

  12. Ellsiepen P., Hartmann S.: Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int. J. Numer. Methods Eng. 51, 679–707 (2001)

    Article  MATH  Google Scholar 

  13. Fritzen, P.: Numerische Behandlung nichtlinearer Probleme der Elastizitäts- und Plastizitätstheorie. Doctoral thesis, Department of Mathematics, University of Darmstadt (1997)

  14. Hairer E., Wanner G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

    MATH  Google Scholar 

  15. Hairer E., Lubich C., Roche M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Springer, Berlin (1989)

    MATH  Google Scholar 

  16. Hairer E., Norsett S.P., Wanner G.: Solving Ordinary Differential Equations I, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  17. Hamkar, A.W., Hartmann, S., Rang, J.: A stiffly accurate Rosenbrock-type method of order 2. Appl. Numer. Math. (2010) (in review)

  18. Hartmann S.: Computation in finite strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations. Comput. Methods Appl. Mech. Eng. 191(13–14), 1439–1470 (2002)

    Article  MATH  Google Scholar 

  19. Hartmann S.: A remark on the application of the Newton–Raphson method in non-linear finite element analysis. Comput. Mech. 36(2), 100–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hartmann S.: A thermomechanically consistent constitutive model for polyoxymethylene: experiments, material modeling and computation. Arch. Appl. Mech. 76, 349–366 (2006)

    Article  MATH  Google Scholar 

  21. Hartmann S., Bier W.: High-order time integration applied to metal powder. Int. J. Plast. 24(1), 17–54 (2008)

    Article  MATH  Google Scholar 

  22. Hartmann S., Bier W.: High-order time integration applied to metal powder plasticity. Int. J. Plast. 24(1), 17–54 (2008)

    Article  MATH  Google Scholar 

  23. Hartmann S., Hamkar A.W.: Rosenbrock-type methods applied to finite element computations within finite strain viscoelasticity. Comput. Methods Appl. Mech. Eng. 199(23–24), 1455–1470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartmann S., Haupt P.: Stress computation and consistent tangent operator using non-linear kinematic hardening models. Int. J. Numer. Methods Eng. 36, 3801–3814 (1993)

    Article  MATH  Google Scholar 

  25. Hartmann S., Neff P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hartmann S., Wensch J.: Finite element analysis of viscoelastic structures using Rosenbrock-type methods. Comput. Mech. 40, 383–398 (2007)

    Article  MATH  Google Scholar 

  27. Hartmann S., Lührs G., Haupt P.: An efficient stress algorithm with applications in viscoplasticity and plasticity. Int. J. Numer. Methods Eng. 40, 991–1013 (1997)

    Article  MATH  Google Scholar 

  28. Hartmann S., Quint K.J., Arnold M.: On plastic incompressibility within time-adaptive finite elements combined with projection techniques. Comput. Methods Appl. Mech. Eng. 198, 178–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hartmann S., Quint K.J., Hamkar A.W.: Displacement control in time-adaptive non-linear finite-element analysis. J. Appl. Math. Mech. 88(5), 342–364 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Hartmann S., Duintjer Tebbens J., Quint K.J., Meister A.: Iterative solvers within sequences of large linear systems in non-linear structural mechanics. J. Appl. Math. Mech. (ZAMM) 89(9), 711–728 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hiley R.A., Rouainia M.: Explicit Runge–Kutta methods for the integration of rate-type constitutive equations. Comput. Mech. 42(1), 53–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hoyer W., Schmidt J.W.: Newton-type decomposition methods for equations arising in network analysis. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 64, 397–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lion A.: On the large deformation behaviour of reinforced rubber at different temperatures. J. Mech. Phys. Solids 45, 1805–1834 (1997)

    Article  Google Scholar 

  34. Liu C.H., Hofstetter G., Mang H.A.: 3d finite element analysis of rubber-like materials at finite strains. Eng. Comput. 11, 111–128 (1994)

    Google Scholar 

  35. Lubliner J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)

    Article  Google Scholar 

  36. Lührs G., Hartmann S., Haupt P.: On the numerical treatment of finite deformations in elastoviscoplasticity. Comput. Methods Appl. Mech. Eng. 144, 1–21 (1997)

    Article  MATH  Google Scholar 

  37. Murua A.: Partitioned half-explicit Runge–Kutta methods for differential-algebraic systems of index 2. Computing 59(1), 43–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rabbat N.B.G., Sangiovanni-Vincentelli A.L., Hsieh H.Y.: A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain. IEEE Trans. Circuits Syst. 26, 733–740 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rang, J., Angermann, L.: New Rosenbrock methods of order 3 for PDAEs of index 2. In: Proceedings of Equadiff, 11, pp 385–394. (2005)

  40. Schenk O., Gärtner K.: Solving unsymmetric sparse systems of linear equations with Pardiso. Future Gener. Comput. Syst. 20(3), 475–487 (2004). doi:10.1016/j.future.2003.07.011

    Article  Google Scholar 

  41. Scherf, O.: Numerische Simulation inelastischer Körper. Fortschritt-Berichte VDI, Reihe 20 (Rechnerunterstützte Verfahren) Nr.321, VDI-Verlag, Düsseldorf (2000)

  42. Schropp J.: Geometric properties of Runge–Kutta discretizations for index 2 differential algebraic equations. SIAM J. Numer. Anal. 40(3), 872–890 (2003)

    Article  MathSciNet  Google Scholar 

  43. Simo J.C., Taylor R.L.: Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Eng. 48, 101–118 (1985)

    Article  MATH  Google Scholar 

  44. Simo J.C., Taylor R.L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. Simo J.C., Taylor R.L., Pister K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sofroniou M., Spaletta G.: Construction of explicit Runge–Kutta pairs with stiffness detection. Math. Comput. Model. 40, 1157–1169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Strehmel K., Weiner R.: Numerik gewöhnlicher Differentialgleichungen. Teubner Verlag, Stuttgart (1995)

    MATH  Google Scholar 

  48. Wittekindt, J.: Die numerische Lösung von Anfangs-Randwertproblemen zur Beschreibung inelastischen Werkstoffverhaltens. Doctoral thesis, Department of Mathematics, University of Darmstadt (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothe, S., Hamkar, AW., Quint, K.J. et al. Comparison of diagonal-implicit, linear-implicit and half-explicit Runge–Kutta methods in non-linear finite element analyses. Arch Appl Mech 82, 1057–1074 (2012). https://doi.org/10.1007/s00419-012-0617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0617-5

Keywords

Navigation