Skip to main content
Log in

A remark on the application of the Newton-Raphson method in non-linear finite element analysis

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Usually the notion “Newton-Raphson method” is used in the context of non-linear finite element analysis based on quasi-static problems in solid mechanics. It is pointed out that this is only true in the case of non-linear elasticity. In the case of constitutive equations of evolutionary-type, like in viscoelasticity, viscoplasticity or elastoplasticity, the “Multilevel-Newton algorithm” is usually applied yielding the notions of global and local level (iteration), as well as the consistent tangent operator. In this paper, we investigate the effects of a consistent application of the classical Newton-Raphson method in connection with the finite element method, and compare it with the classical Multilevel-Newton algorithm. Furthermore, an improved version of the Multilevel-Newton method is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bathe K-J, Ramm E, Wilson E (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9(2):353–386

    Google Scholar 

  • Bicanic N, Johnson K (1979) Who was ‘Raphson’? Int J Numer Methods Eng 14:148–152

    Google Scholar 

  • Cash J (1979) Diagonally implicit Runge-Kutta formulae with error estimates. J Institute of Math Appl 24:293–301

    Google Scholar 

  • Christensen P (2000) Computational Nonsmooth Mechanics. Contact, Friction and Plasticity. Doctoral thesis, Department of Mechanical Engineering, Linköping University. Linköping Studies in Science and Technology, No.657

  • Davis T, Duff I (1997) Umfpack version 2.2 unsymmetric-pattern multifrontal package. http://heron.cc.ukans.edu/software/umfpack

  • Eckert S, Baaser H, Gross D, Scherf O (2004). A BDF2 integration method with stepsize control for elastoplasticity. Comput Mech 34: 377–386

    Article  Google Scholar 

  • Ellsiepen P, Hartmann S (2001) Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int J Numer Methods Eng 51:679–707

    Article  Google Scholar 

  • Fritzen P (1997) Numerische Behandlung nichtlinearer Probleme der Elastizitäts- und Plastizitätstheorie. Doctoral thesis, Department of Mathematics, University of Darmstadt

  • Golub G, van Loan CF (1986) Matrix Computations. North Oxford Academic Publ., London

  • Hartmann S (1998a) Nichtlineare Finite-Elemente-Berechnung angewendet auf ein Viskoplastizitätsmodell mit Überspannungen. In: Hartmann S, Tsakmakis C, (eds) Aspekte der Kontinuumsmechanik und Materialtheorie. Gesamthochschul-Bibliothek Verlag, Kassel, pp. 55–80

  • Hartmann S (1998b) Zur Berechnung inelastischer Festkörper mit der Methode der finiten Elemente. In Hartmann S, Haupt P, Ulbricht V, (eds) Modellierung und Simulation. Gesamthochschul-Bibliothek, Kassel pp. 119–130

  • Hartmann S (2002) Computation infinite strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations. Comput Methods Appl Mech Eng 191(13–14):1439–1470

    Google Scholar 

  • Hartmann S (2003a) Finite-Elemente Berechnung inelastischer Kontinua. Interpretation als Algebro-Differentialgleichungssysteme. Technical Report 1/2003, University of Kassel, Institute of Mechanics, Kassel, Germany

  • Hartmann S (2003b) On displacement control within the DIRK/MLNA approach in non-linear finite element analysis. In: Bathe K-J (ed) Comput. Fluid Solid Mech. 2003, volume 1. Elsevier, Amsterdam pp. 316–319

  • Hartmann S, Lührs G, Haupt P (1997) An efficient stress algorithm with applications in viscoplasticity and plasticity. Int J Num Methods Eng 40:991–1013

    Article  Google Scholar 

  • Hibbitt H, Marcal P, Rice J (1970) A finite element formulation for problems of large strain and large displacement. Int J Solids Struct 6:1069–1086

    Article  Google Scholar 

  • Hoyer W, Schmidt J (1984) Newton-type decomposition methods for equations arising in network analysis. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 64:397–405

    Google Scholar 

  • Hughes T, Pister K (1979) Consistent linearization in mechanics of solids and structures. Comput Struct 8:391–397

    Article  Google Scholar 

  • Lührs G, Hartmann S, Haupt P (1997) On the numerical treatment of finite deformations in elastoviscoplasticity. Comput Methods Appl Mech Eng 144:1–21

    Article  Google Scholar 

  • Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical Recipes in FORTRAN. Cambridge University Press, Cambridge, 2nd edn.

  • Rabbat N, Sangiovanni-Vincentelli A, Hsieh H (1979) A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain. IEEE Trans Circuits Sys 26:733–740

    Article  Google Scholar 

  • Scherf O (2000) Numerische Simulation inelastischer Körper. Fortschritt-Berichte VDI, Reihe 20 (Rechnerunterstützte Verfahren) Nr.321. VDI-Verlag, Düsseldorf.

  • Simo J, Taylor R (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118

    Google Scholar 

  • Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79:173–202

    Article  Google Scholar 

  • Wittekindt J (1991) Die numerische Lösung von Anfangs-Randwertproblemen zur Beschreibung inelastischen Werkstoffverhaltens. Doctoral thesis, Department of Mathematics, University of Darmstadt.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, S. A remark on the application of the Newton-Raphson method in non-linear finite element analysis. Comput Mech 36, 100–116 (2005). https://doi.org/10.1007/s00466-004-0630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-004-0630-9

Keywords

Navigation