Skip to main content
Log in

A Thermomechanically Consistent Constitutive Model for Polyoxymethylene

Experiments, Material Modelling and Computation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this article tension, compression and torsion tests are presented using thin-walled tubes of polyoxymethylene (POM). These isothermal experiments show non-linear rate dependence, a tension–compression asymmetry and a pronounced relaxation behaviour. On the basis of the experiments carried out, a constitutive model of viscoplasticity with an equilibrium hysteresis in the small-strain regime is developed. Test calculations using finite elements based on the DAE approach show the capabilities of the thermomechanically consistent model. In particular, a very efficient stress algorithm can be derived which has no iteration on the element level. Moreover, it will be shown that time-adaptive finite elements could be of high importance if rate-dependent constitutive models are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aya T., Nakayama T.(1997): Influence of environmental temperature on yield stress of polymers. JSME Jpn. Soc. Mech. Eng. Int. J. Ser. A 40(3): 343–348

    Google Scholar 

  2. Cash J.(1979): Diagonally implicit Runge-Kutta formulae with error estimates. J. Inst. Math. Appl. 24: 293–301

    MATH  Google Scholar 

  3. Domininghaus H.(1998): Die Kunststoffe und ihre Eigenschaften, 5th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Eckert S., Baaser H., Gross D., Scherf O.(2004): A BDF2 integration method with stepsize control for elastoplasticity. Comput. Mech. 34(5): 377–386

    Article  MATH  Google Scholar 

  5. El-Sayed H., Barton D., Abdel-Latif L., Kenawy M.(2001): Experimental and numerical investigation of deformation and fracture of semicrystalline polymers under varying strain rate and triaxial states of stress. Plast. Rubber Composites 30(2): 82–87

    Google Scholar 

  6. Ellsiepen P., Hartmann S. (2001): Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int. J. Numer. Methods Eng. 51: 679–707

    Article  MATH  Google Scholar 

  7. Hairer E., Wanner G.(1996): Solving Ordinary Differential Equations II, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Hartmann S.(2002): Computation in finite strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations. Comput. Methods Appl. Mech. Eng. 191(13–14): 1439–1470

    Article  MATH  Google Scholar 

  9. Hartmann S.(2005): A remark on the application of the Newton–Raphson method in non-linear finite element analysis. Comput. Mech. 36(2): 100–116

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartmann S., Tschöpe T., Schreiber L., Haupt P. (2003): Large deformations of a carbon black-filled rubber Experiment, optical measurement and parameter identification using finite elements. Eur. J. Mech. Ser. A Solids 22: 309–324

    MATH  Google Scholar 

  11. Hashemi S., Gilbride M., Hodgkinson J.(1996): Mechanical property relationships in glass-filled polyoxymethylene. J. Mater. Sci. 31: 5017–5025

    Article  Google Scholar 

  12. Haupt P.(2000): Continuum Mechanics and Theory of Materials. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  13. Haupt P., Lion A.(1995): Experimental identification and mathematical modelling of viscoplastic material behavior. J. Contin. Mech. Thermodyn. 7: 73–96

    MathSciNet  Google Scholar 

  14. Haupt P., Sedlan K.(2001): Viscoplasticity of elastomeric materials. experimental facts and constitutive modelling. Arch. Appl. Mech. 71: 89–109

    Article  MATH  Google Scholar 

  15. Hoyer W., Schmidt J.(1984): Newton-type decomposition methods for equations arising in network analysis. ZAMM Z. Angew. Math. Mech. 64: 397–405

    MATH  MathSciNet  Google Scholar 

  16. Kitagawa M., Zhou D., Qiu J.(1995): Stress–strain curves for solid polymers. Polym. Eng. Sci. 35(22): 1725–1732

    Article  Google Scholar 

  17. Kletschkowski T., Schomburg U., Bertram A.(2001): Viskoplastische Materialmodellierung am Beispiel des Dichtungswerkstoffs Polytetrafluorethylen. Tech. Mech. 21: 227–241

    Google Scholar 

  18. Korzen, M.: Beschreibung des inelastischen Materialverhaltens im Rahmen der Kontinuumsmechanik: Vorschlag einer Materialgleichung vom viskoelastisch-plastischen Typ. PhD thesis, TH Darmstadt (1988)

  19. Lion A.(1996): A constitutive model for black filled rubber. experimental investigations and mathematical representations. J. Contin. Mech. Thermodyn. 8: 153–169

    Google Scholar 

  20. Liu M., Krempl E.(1979): A uniaxial viscoplastic model based on total strain and overstress. J. Mech. Phys. Solids 27: 377–391

    Article  MATH  Google Scholar 

  21. Plummer C., Beguelin P., Kausch H.H.(1995): The temperature and strain-rate dependence of mechanical properties in polyoxymethylene. Polym. Eng. Sci. 35(16): 1300–1312

    Article  Google Scholar 

  22. Plummer C., Scaramuzzino P., Kausch H.H., Phillippoz J.(2000): High temperature slow crack growth in polyoxymethylene. Polym. Eng. Sci. 40(6): 1306–1317

    Article  Google Scholar 

  23. Rabbat N., Sangiovanni-Vincentelli A., Hsieh H.(1979). A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain. IEEE Trans. Circuits Syst. 26: 733–740

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, S. A Thermomechanically Consistent Constitutive Model for Polyoxymethylene. Arch Appl Mech 76, 349–366 (2006). https://doi.org/10.1007/s00419-006-0034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-006-0034-8

Keywords

Navigation