Skip to main content
Log in

Micromechanical modeling of linear viscoelastic behavior of heterogeneous materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Study of effective behavior of heterogeneous materials, starting from the properties of the microstructure, represents a critical step in the design and modeling of new materials. Within this framework, the aim of this work is to introduce a general internal variables approach for scale transition problem in linear viscoelastic case. A new integral formulation is established, based on the complete taking into account of field equations and differential constitutive laws of the heterogeneous problem, in which the effects of elasticity and viscosity interact in a representative volume element. Thanks to Green’s techniques applied to space convolution’s term, a new concentration relation is obtained. The step of homogenization is then carried out according to the self-consistent approximation. The results of the present model are illustrated and compared with those provided by Hashin’s and Rougier’s ones, considered as references, and by internal variables models such as those of Weng and translated fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gubernatis J.E., Krumhansl J.A.: Macroscopic engineering properties of polycrystalline materials: elastic properties. J. Appl. Phys. 46, 1875–1883 (1975)

    Article  Google Scholar 

  2. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  3. Voigt W.: Uber die Beziehung zwischen den beiden Elasticitãtsconstanten isotroper Kõrper. Ann. Phys. 38, 573–587 (1889)

    Article  MathSciNet  Google Scholar 

  4. Reuss A.: Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929)

    Article  MATH  Google Scholar 

  5. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of polycrystals. J. Mech. Phys. Solids 10, 343–352 (1962)

    Article  MathSciNet  Google Scholar 

  6. Taylor G.I.: Plastic strain in metals. J. Inst. Metals 61, 307–324 (1938)

    Google Scholar 

  7. Willis J.R.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25, 185–202 (1977)

    Article  MATH  Google Scholar 

  8. Berveiller M., Zaoui A.: An extension of the self-consistent scheme to plastically flowing polycrystals. J. Mech. Phys. Solids 26, 325–344 (1979)

    Article  Google Scholar 

  9. Kröner E.: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einskristalls. Z. Phys. 151, 504 (1958)

    Article  Google Scholar 

  10. Kröner E.: Zur plastischen Verformung des Vielkristalls. Acta Metall. 9, 155–161 (1961)

    Article  Google Scholar 

  11. Hill R.: Continuum micromechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101 (1965)

    Article  MATH  Google Scholar 

  12. Lipinski P., Berveiller M.: Elastoplasticity of micro-inhomogeneous metals at large strains. Int. J. Plast. 5, 149–172 (1989)

    Article  MATH  Google Scholar 

  13. Hutchinson J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A348, 101–127 (1976)

    Google Scholar 

  14. Suquet P.: Elements of homogeneization for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (eds) Homogeneization Techniques for Composite Media, pp. 193–278. Springer, Berlin (1985)

    Google Scholar 

  15. Salençon J.: Viscoélasticité. Cours de calcul des structures anélastiques. Presses de l’Ecole Nationale des Ponts et Chaussées, Paris (1983)

    Google Scholar 

  16. Laws N.: Viscoelastic inclusion problem. J. Eng. Mech. Div. 106(EM5), 915–928 (1980)

    Google Scholar 

  17. Laws N., McLaughlin R.: Self-consistent estimates for the viscoelastic creep compliance of composite materials. Proc. R. Soc. Lond. A359, 251–273 (1978)

    MathSciNet  Google Scholar 

  18. Hashin Z.: The inelastic inclusion problem. Int. J. Eng. Sci. 7, 11–36 (1969)

    Article  MATH  Google Scholar 

  19. Li J., Weng G.J.: Strain-rate sensitivity, relaxation behavior, and complex moduli of class of isotropic viscoelastic composites. J. Eng. Mater. Technol. 116, 495–504 (1994)

    Article  Google Scholar 

  20. Rougier Y., Stolz C., Zaoui A.: Représentation spectrale en viscoélasticité linéaire des matériaux hétérogènes. C. R. Acad. Sci. Paris 316, 1517–1522 (1993)

    MATH  Google Scholar 

  21. Masson R., Bornert M., Suquet P., Zaoui A.: An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J. Mech. Phys. Solids 48, 1203–1227 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rougier Y., Stolz C., Zaoui A.: Self-consistent modelling of elastic-viscoplastic polycrystals. C. R. Acad. Sci. Paris 318, 145–151 (1994)

    MATH  Google Scholar 

  23. Weng C.J.: A self-consistent scheme for the relaxation behavior of metals. Trans. ASME J. Appl. Mech. 48, 779–784 (1981)

    Article  Google Scholar 

  24. Nemat-Nasser S., Obata M.: Rate dependent finite elastoplastic deformation of polycrystals. Proc. R. Soc. Lond. A407, 343–375 (1986)

    Google Scholar 

  25. Zaoui, A., Raphanel, J.L.: On the nature of the intergranular accommodation in the modeling of elastoviscoplastic behavior of polycrystalline aggregates. In: MECAMAT’91 Teodosiu, C., Raphanel, J.L., Sidoroff, F. (eds.) Large Plastic Deformations, Fundamentals and Application to Metal Forming, pp. 185–192. Rotterdam (1993)

  26. Kouddane, R., Molinari, A., Canova, G.R.: Self-consistent modelling of heterogeneous viscoelastic and elastoplastic materials. In: MECAMAT’91 Teodosiu, C., Raphanel, J.L., Sidoroff, F. (eds.) Large Plastic Deformations, Fundamentals and Application to Metal Forming, pp. 129–141. Rotterdam (1993)

  27. Paquin A., Sabar H., Berveiller M.: Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials. Arch. Appl. Mech. 69, 14–35 (1999)

    Article  MATH  Google Scholar 

  28. Berbenni, S.: Elastoviscoplasticité des aciers polycristallins: Modélisation micromécanique et physique. Applications au comportement dynamique et à l’effet Bake-Hardening. Doctoral thesis of ENSAM, Metz (2002)

  29. Kunin I.A.: Elastic Media with Microstructure II: Three-Dimensional Models. Springer Series in Solid-State Sciences, vol. 44. Springer, Berlin (1983)

    Google Scholar 

  30. Sabar H., Berveiller M., Favier V., Berbenni S.: A new class of micro-macro models for elastic-viscoplastic heterogeneous materials. Int. J. Solids Struct. 39, 3257–3276 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mura T.: Micromechanics of Defects in Solids. Kluwer, Boston (1991)

    Google Scholar 

  32. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. In: Sneddon, I.W., Hill, R. (eds.) Proc. R. Soc. Lond. A241, 376–396 (1957)

  33. Weng G.J.: A unified, self-consistent theory for the plastic deformation of metals. J. Appl. Mech. 49, 728–734 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Coulibaly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulibaly, M., Sabar, H. Micromechanical modeling of linear viscoelastic behavior of heterogeneous materials. Arch Appl Mech 81, 345–359 (2011). https://doi.org/10.1007/s00419-010-0411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0411-1

Keywords

Navigation