Skip to main content
Log in

Dynamic intracellular localization of Dazl protein during Xenopus germline development

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Xenopus dazl encoding an RNA-binding protein has been identified as a component of the germ plasm and is involved in the migration and differentiation of the primordial germ cells (PGCs). Here, we investigated the intracellular localization of Dazl in germline cells throughout the lifetime of Xenopus. In early embryogenesis, Dazl was detected initially in the germ plasm and then translocated to a perinuclear region. Then, it was detected within the nucleus in PGCs. Dazl was observed only in the cytoplasm in PGCs when sex differentiation began in the gonads. Dazl was distributed in both the nucleus and cytoplasm of the primary oogonium and spermatogonium, but only in the cytoplasm of the secondary oogonium and spermatogonium. In spermatocytes, Dazl was distributed throughout cytoplasm and localized at the spindles and cytoplasm during meiosis. Then, it was detected as speckles in the nucleus in the round spermatid. The dynamic intracellular localization suggests that Dazl is a multifunctional protein regulating RNA metabolism required for Xenopus germline development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berekelya LA, Mikryukov AA, Luchinskaya NN, Ponomarev MB, Woodland HR, Belyavsky AV (2007) The protein encoded by the germ plasm RNA Germes associates with dynein light chains and functions in Xenopus germline development. Differentiation 75:546–558

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Melton C, Suh N, Oh JS, Horner K, Xie F, Sette C, Blelloch R, Conti M (2011) Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocytes-to zygote transition. Gene Dev 25:755–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng MH, Maines JZ, Wasserman SA (1998) Biphasic subcellular localization of the DAZL-related protein boule in Drosophila spermatogenesis. Dev Biol 204:567–576

    Article  CAS  PubMed  Google Scholar 

  • Collier B, Gorgoni B, Loveridge C, Cooke HJ, Gray NK (2005) The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J 24:2656–2666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eberhart CG, Maines JZ, Wasserman SA (1996) Meiotic cell cycle requirement for a fly homologue of human deleted in Azoospermia. Nature 381:783–785

    Article  CAS  PubMed  Google Scholar 

  • Eliscovich C, Peset I, Vernos I, Méndez R (2008) Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol 10:858–865

    Article  CAS  PubMed  Google Scholar 

  • Gill ME, Hu Y-C, Lin Y, Page DC (2011) Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci USA 108:7443–7448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa E, Karashima T, Sumiyoshi E, Yamamoto M (2006) C. elegans CPB-3 interacts with DAZ-1 and functions in multiple steps of germline development. Dev Biol 295:689–699

    Article  CAS  PubMed  Google Scholar 

  • He J, Stewart K, Kinnell HL, Anderson RA, Childs AJ (2013) A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in human, but not mice. Plos One 8:e73996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houston DW, King ML (2000) A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127:447–456

    CAS  PubMed  Google Scholar 

  • Houston DW, Zhang J, Maines JZ, Wasserman SA, King ML (1998) A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule. Development 125:171–180

    CAS  PubMed  Google Scholar 

  • Karashima T, Sugimoto A, Yamamoto M (2000) Caenorhabditis elegans homologue of the human azoospermia factor DAZ is required for oogenesis but not for spermatogenesis. Development 127:1069–1079

    CAS  PubMed  Google Scholar 

  • Kataoka K, Yamaguchi T, Orii H, Tazaki A, Watanabe K, Mochii M (2006) Visualization of the Xenopus primordial germ cells using a green fluorescent protein controlled by cis elements of the 3’ untranslated region of DEADSouth gene. Mech Dev 123:746–760

    Article  CAS  PubMed  Google Scholar 

  • Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA (2009) Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 462:222–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim B, Cooke HJ, Rhee K (2012) DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress. Development 139:568–578

    Article  CAS  PubMed  Google Scholar 

  • Kronja I, Orr-Weaver TL (2011) Translational regulation of the cell cycle: when, where, how and why? Philos Trans R Soc B 366:3638–3652

    Article  CAS  Google Scholar 

  • Kurihara Y, Watanabe H, Kawaguchi A, Hori T, Mishiro K, Ono M, Sawada H, Uesugi S (2004) Dynamic changes in intracellular localizations of mouse Prrp/DAZAP1 during spermatogenesis: the necessity of the C-terminal proline-rich region for nuclear import and localization. Arch Histol Cytol 67:325–333

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Lee S, Kim B, Chang S, Kim SW, Paick J-S, Rhee K (2006) Dazl can bind to dynein motor complex and may play a role in transport of specific mRNAs. EMBO J 25:4263–4270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YM, Chen CW, Sun HS, Tsai SJ, Hsu CC, Teng YN, Lin JSN, Kuo PL (2001) Expression patterns and transcript concentrations of the autosomal DAZL gene in testes of azoospermic men. Mol Hum Reprod 7:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • MacArthur H, Houston DW, Bubunenko M, Mosquera L, King ML (2000) DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to eIF4A. Mech Dev 95:291–295

    Article  CAS  PubMed  Google Scholar 

  • Machado RJ, Moore W, Hames R, Houliston E, Chang P, King ML, Woodland HR (2005) Xenopus Xpat protein is a major component of germ plasm and may function in its organisation and positioning. Dev Biol 287:289–300

    Article  CAS  PubMed  Google Scholar 

  • Mita K, Yamashita M (2000) Expression of Xenopus Daz-like protein during gametogenesis and embryogenesis. Mech Dev 94:251–255

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland Publication, New York

    Google Scholar 

  • Orii H, Sakurai T, Watanabe K (2005) Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol 215:143–157

    Article  CAS  PubMed  Google Scholar 

  • Reijo RA, Dorfman DM, Slee R, Renshaw AA, Loughlin KR, Cooke H, Page DC (2000) DAZ family proteins exist through male germ cell development and transit from nucleus to cytoplasm at meiosis in humans and mice. Biol Reprod 63:1490–1496

    Article  CAS  PubMed  Google Scholar 

  • Reynolds N, Collier B, Maratou K, Bingham V, Speed RM, Taggart M, Semple CA, Gray NK, Cooke HJ (2005) Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet 14:3899–3909

    Article  CAS  PubMed  Google Scholar 

  • Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ (1997) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389:73–77

    Article  CAS  PubMed  Google Scholar 

  • Saunders PTK, Turner JMA, Riggiu M, Taggart M, Burgoyne PS, Elliott D, Cooke HJ (2003) Absence of mDazl produces a final block on germ cell development at meiosis. Reproduction 126:589–597

    Article  CAS  PubMed  Google Scholar 

  • Tada H, Orii H, Mochii M, Watanabe K (2012) Ectopic formation of primordial germ cells by transplantation of the germ plasm: direct evidence for germ cell determinant in Xenopus. Dev Biol 371:86–93

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Takii M, Motoishi M, Orii H, Mochii M, Watanabe K (2012) Analysis of localization and reorganization of germ plasm in Xenopus transgenic line with fluorescence-labeled mitochondoria. Dev Growth Differ 54:767–776

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Watanabe K, Orii H (2015) Intracellular localizations of the dead end protein in Xenopus primordial germ cells. Int J Dev Biol 59 (In press)

  • Takeda Y, Mishima Y, Fujiwara T, Sakamoto H, Inoue K (2009) DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. Plos One 4:e7513

    Article  PubMed Central  PubMed  Google Scholar 

  • VanGompel MJW, Xu EY (2010) A novel requirement in mammalian spermatid differentiation for the DAZ-family protein Boule. Hum Mol Genet 19:2360–2369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • VanGompel MJW, Xu EY (2011) The roles of the DAZ family in spermatogenesis. Spermatogenesis 1:36–44

    Article  PubMed Central  PubMed  Google Scholar 

  • Venkatarama T, Lai F, Luo X, Zhou Y, Newman K, King ML (2010) Repression of zygotic gene expression in the Xenopus germline. Development 137:651–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vera Y, Dai T, Hikim APS, Lue Y, Salido EC, Swerdloff RS, Yen PH (2002) Deleted in azoospermia associated protein 1 shuttles between nucleus and cytoplasm during normal germ cell maturation. J Androl 23:622–628

    CAS  PubMed  Google Scholar 

  • Villalpando I, Merchant-Larios H (1990) Determination of the sensitive stages for gonadal sex-reversal in Xenopus laevis tadpoles. Int J Dev Biol 34:281–285

    CAS  PubMed  Google Scholar 

  • Xu EY, Moore FL, Reijo Pera RA (2001) A gene family required for human germ cell development evolved from ancient meiotic gene conserved in metazoans. Proc Natl Acad Sci USA 98:7414–7419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi T, Taguchi A, Watanabe K, Orii H (2013) DEADSouth protein localizes to germ plasm and is required for the development of primordial germ cells in Xenopus laevis. Biol Open 2:191–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Z, Ji P, Cao J, Zhu S, Li Y, Zheng L, Chen X, Feng L (2009) Dazl promotes germ cell differentiation from embryonic stem cells. J Mol Cell Biol 1:93–103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Koichi Mita (Tokushima Bunri Univ.) and Masakane Yamashita (Hokkaido Univ.) for the anti-Xdazl monoclonal antibody (referred to as anti-Dazl in this study), and Hideo Nishitani and Fumiko Hirose (Univ. Hyogo) for the anti-tubulin antibody. We thank Shin-ichiro Nishitani (Minoo-Higashi high school) for staging meiosis, and Kensuke Kataoka, Midori Kitao and Kenji Watanabe (Univ. Hyogo) for sharing their preliminary data. We also thank members of our laboratory, especially Makoto Mochii and Yoshihiko Umesono, for their support and encouragement. This study was supported in part by Japan Society for the Promotion of Science KAKENHI (Grant Number 257228) to HT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haru Tada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tada, H., Orii, H. Dynamic intracellular localization of Dazl protein during Xenopus germline development. Histochem Cell Biol 144, 157–166 (2015). https://doi.org/10.1007/s00418-015-1323-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1323-5

Keywords

Navigation