Skip to main content

Advertisement

Log in

The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The urinary tract is exposed to a variety of possible injures that may lead to organ damage or loss, and thus, the establishment of valid in vitro urothelial models to study the mechanism of drug candidates is necessary. This study is the first to investigate the effect of chitosan on urothelia in vitro and to evaluate whether chitosan-treated urothelial models can regenerate in vitro and reestablish a functional urothelium. Biomimetic hyperplastic and normoplastic urothelial models were used to test the effect of chitosan (0.05 %) on partially and highly differentiated urothelial cells (UCs) by monitoring their molecular, ultrastructural, and physiological changes for 3 weeks. Chitosan caused an immediate and complete loss of transepithelial resistance (TER), tight junction disruption, cytopathological changes of UCs, and consequently enhanced the permeability of partially and highly differentiated urothelial models. However, 3 weeks after chitosan treatment, TER was reestablished, tight junctions resealed, permeability decreased, and progressive differentiation stages of newly exposed superficial UCs expressing uroplakins and tight junction protein claudin-8 were found. The in vitro models regenerated and reestablished urothelia with a tight barrier. The biomimetic urothelial models represent appropriate in vitro models for studying urothelial drug candidates as well as evaluating drug permeabilities and their intracellular function. Understanding the possible intracellular function of chitosan could significantly advance approaches to treating urothelial-specific diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blango MG, Ott EM, Erman A, Veranic P, Mulvey MA (2014) Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs. PLoS ONE 9(3):e93327. doi:10.1371/journal.pone.0093327

    Article  PubMed Central  PubMed  Google Scholar 

  • Canali MM, Pedrotti LP, Balsinde J, Ibarra C, Correa SG (2012) Chitosan enhances transcellular permeability in human and rat intestine epithelium. Eur J Pharm Biopharm 80(2):418–425. doi:10.1016/j.ejpb.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  • Carr SF, Papp E, Wu JC, Natsumeda Y (1993) Characterization of human type I and type II IMP dehydrogenases. J Biol Chem 268(36):27286–27290

    CAS  PubMed  Google Scholar 

  • Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther 9(7):857–879. doi:10.1586/eri.11.59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deli MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 1788(4):892–910. doi:10.1016/j.bbamem.2008.09.016

    Article  CAS  PubMed  Google Scholar 

  • Dodane V, Khan MA, Merwin JR (1999) Effect of chitosan on epithelial permeability and structure. Int J Pharm 182(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Dodou D, Breedveld P, Wieringa PA (2005) Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur J Pharm Biopharm 60(1):1–16. doi:10.1016/j.ejpb.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  • Erman A, Kos MK, Zakelj S, Resnik N, Romih R, Veranič P (2013) Correlative study of functional and structural regeneration of urothelium after chitosan-induced injury. Histochem Cell Biol. doi:10.1007/s00418-013-1088-7

    PubMed  Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89(2):151–165

    Article  CAS  PubMed  Google Scholar 

  • Hicks RM (1965) The fine structure of the transitional epithelium of rat ureter. J Cell Biol 26(1):25–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hicks RM (1975) The mammalian urinary bladder: an accommodating organ. Biol Rev Camb Philos Soc 50(2):215–246

    Article  CAS  PubMed  Google Scholar 

  • Hsu LW, Lee PL, Chen CT, Mi FL, Juang JH, Hwang SM, Ho YC, Sung HW (2012) Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan. Biomaterials 33(26):6254–6263. doi:10.1016/j.biomaterials.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  • Hsu LW, Ho YC, Chuang EY, Chen CT, Juang JH, Su FY, Hwang SM, Sung HW (2013) Effects of pH on molecular mechanisms of chitosan-integrin interactions and resulting tight-junction disruptions. Biomaterials 34(3):784–793. doi:10.1016/j.biomaterials.2012.09.082

    Article  CAS  PubMed  Google Scholar 

  • Jerman UD, Veranič P, Kreft ME (2013) Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng Part C Methods. doi:10.1089/ten.TEC.2013.0298

    PubMed  Google Scholar 

  • Kerec M, Bogataj M, Veranic P, Mrhar A (2005) Permeability of pig urinary bladder wall: the effect of chitosan and the role of calcium. Eur J Pharm Sci 25(1):113–121. doi:10.1016/j.ejps.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  • Kos MK, Bogataj M, Veranic P, Mrhar A (2006) Permeability of pig urinary bladder wall: time and concentration dependent effect of chitosan. Biol Pharm Bull 29(8):1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Kos MK, Bogataj M, Mrhar A (2008) Heparin decreases permeability of pig urinary bladder wall preliminarily enhanced by chitosan. Drug Dev Ind Pharm 34(2):215–220. doi:10.1080/03639040701542440

    Article  CAS  PubMed  Google Scholar 

  • Kotze AF, Luessen HL, de Leeuw BJ, de Boer AG, Verhoef JC, Junginger HE (1998) Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release 51(1):35–46

    Article  PubMed  Google Scholar 

  • Kotze AF, Luessen HL, de Boer AG, Verhoef JC, Junginger HE (1999) Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments. Eur J Pharm Sci 7(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Kreft ME, Hudoklin S, Sterle M (2005) Establishment and characterization of primary and subsequent subcultures of normal mouse urothelial cells. Folia Biol (Praha) 51(5):126–132

    CAS  Google Scholar 

  • Kreft ME, Sterle M, Jezernik K (2006) Distribution of junction- and differentiation-related proteins in urothelial cells at the leading edge of primary explant outgrowths. Histochem Cell Biol 125(5):475–485. doi:10.1007/s00418-005-0104-y

    Article  CAS  PubMed  Google Scholar 

  • Kreft ME, Romih R, Kreft M, Jezernik K (2009) Endocytotic activity of bladder superficial urothelial cells is inversely related to their differentiation stage. Differentiation 77(1):48–59. doi:10.1016/j.diff.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  • Kreft ME, Di Giandomenico D, Beznoussenko GV, Resnik N, Mironov AA, Jezernik K (2010) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102(11):593–607. doi:10.1042/BC20100024

    Article  CAS  PubMed  Google Scholar 

  • Lavelle J, Meyers S, Ramage R, Bastacky S, Doty D, Apodaca G, Zeidel ML (2002) Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am J Physiol Renal Physiol 283(2):F242–F253. doi:10.1152/ajprenal.00307.2001

    CAS  PubMed  Google Scholar 

  • Lilly JD, Parsons CL (1990) Bladder surface glycosaminoglycans is a human epithelial permeability barrier. Surg Gynecol Obstet 171(6):493–496

    CAS  PubMed  Google Scholar 

  • Min G, Zhou G, Schapira M, Sun TT, Kong XP (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116(Pt 20):4087–4094. doi:10.1242/jcs.00811

    Article  CAS  PubMed  Google Scholar 

  • Negrete HO, Lavelle JP, Berg J, Lewis SA, Zeidel ML (1996) Permeability properties of the intact mammalian bladder epithelium. Am J Physiol 271(4 Pt 2):F886–F894

    CAS  PubMed  Google Scholar 

  • Parsons CL, Boychuk D, Jones S, Hurst R, Callahan H (1990) Bladder surface glycosaminoglycans: an epithelial permeability barrier. J Urol 143(1):139–142

    CAS  PubMed  Google Scholar 

  • Pick DL, Shelkovnikov S, Canvasser N, Louie MK, Tongson-Ignacio J, McDougall EM, Clayman RV (2011) First prize: chitosan and the urothelial barrier: effects on ureteral intraluminal drug penetration and peristalsis. J Endourol 25(3):385–390. doi:10.1089/end.2010.0205

    Article  PubMed  Google Scholar 

  • Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y (2002) The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line(1). J Nutr Biochem 13(3):157–167

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal R, Gunzel D, Finger C, Krug SM, Richter JF, Schulzke JD, Fromm M, Amasheh S (2012) The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials 33(9):2791–2800. doi:10.1016/j.biomaterials.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  • Stewart FA (1986) Mechanism of bladder damage and repair after treatment with radiation and cytostatic drugs. Br J Cancer Suppl 7:280–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Truschel ST, Ruiz WG, Shulman T, Pilewski J, Sun TT, Zeidel ML, Apodaca G (1999) Primary uroepithelial cultures. A model system to analyze umbrella cell barrier function. J Biol Chem 274(21):15020–15029

    Article  CAS  PubMed  Google Scholar 

  • Veranic P, Erman A, Kerec-Kos M, Bogataj M, Mrhar A, Jezernik K (2009) Rapid differentiation of superficial urothelial cells after chitosan-induced desquamation. Histochem Cell Biol 131(1):129–139. doi:10.1007/s00418-008-0492-x

    Article  CAS  PubMed  Google Scholar 

  • Višnjar T, Kreft ME (2013) Air–liquid and liquid–liquid interfaces influence the formation of the urothelial permeability barrier in vitro. In Vitro Cell Dev Biol Anim 49(3):196–204. doi:10.1007/s11626-013-9585-5

    Article  PubMed  Google Scholar 

  • Visnjar T, Kocbek P, Kreft ME (2012) Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol 137(2):177–186. doi:10.1007/s00418-011-0893-0

    Article  CAS  PubMed  Google Scholar 

  • Vllasaliu D, Casettari L, Fowler R, Exposito-Harris R, Garnett M, Illum L, Stolnik S (2012) Absorption-promoting effects of chitosan in airway and intestinal cell lines: a comparative study. Int J Pharm 430(1–2):151–160. doi:10.1016/j.ijpharm.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  • Walker DC, Hill G, Wood SM, Smallwood RH, Southgate J (2004) Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Trans Nanobiosci 3(3):153–163

    Article  CAS  Google Scholar 

  • Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC, Sung HW (2011) Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32(26):6164–6173. doi:10.1016/j.biomaterials.2011.03.056

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Dr. Tung-Tien Sun (New York University Medical School) for his generous gift of uroplakin antibodies, Professor Dr. Peter Veranič for his critical reading of the manuscript, Eva Lasič for proofreading the manuscript, and Sanja Čabraja, Sabina Železnik, Nada Pavlica, and Linda Štrus for technical assistance. The study was supported by the Slovenian Research Agency (Grant No. P3-0108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Erdani Kreft.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 729 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Višnjar, T., Kreft, M.E. The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochem Cell Biol 143, 95–107 (2015). https://doi.org/10.1007/s00418-014-1265-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1265-3

Keywords

Navigation