Skip to main content

Advertisement

Log in

Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

When the urothelial barrier, i.e., the blood−urine barrier, is injured, rapid resealing of the injury is crucial for the normal functioning of the organism. In order to investigate the mechanisms required for rapid resealing of the barrier, we established in vitro models of hyperplastic and normoplastic urothelia. We found that hyperplastic urothelia achieve significantly higher transepithelial resistance (TER) than normoplastic urothelia. However, the expression of cell junctional (claudin-8, occludin, E-cadherin) and differentiation-related proteins (cytokeratin 20 and uroplakins) is weaker in hyperplastic urothelia. Further investigation of cell differentiation status at the ultrastructural level confirmed that superficial urothelial cells (UCs) in hyperplastic urothelial models achieve a lower differentiation stage than superficial UCs in normoplastic urothelial models. With the establishment of such in vitro models and the aid of TER measurements, flow cytometry, molecular and ultrastructural analysis, we here provide unequivocal evidence that the specific cell-cycle distribution and, consequently, the number of cell layers have a significant influence on the barrier function of urothelia. We demonstrate the importance of hyperplasia for the rapid restoration of the urothelial barrier and the maintenance of high TER until the UCs reach a highly differentiated stage and restoration of the urothelial barrier after injury is complete. The information that this approach provides is unique and we expect that further exploitation of hyperplastic and normoplastic urothelial models in future studies may advance our understanding of blood−urine barrier development and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • da Rocha MS, Nascimento MG, Cardoso AP, de Lima PL, Zelandi EA, de Camargo JL, de Oliveira ML (2010) Cytotoxicity and regenerative proliferation as the mode of action for diuron-induced urothelial carcinogenesis in the rat. Toxicol Sci 113:37–44

    Article  PubMed  CAS  Google Scholar 

  • Farsund T (1976) Cell kinetics of mouse urinary bladder epithelium. II. Changes in proliferation and nuclear DNA content during necrosis regeneration, and hyperplasia caused by a single dose of cyclophosphamide. Virchows Arch B Cell Pathol 21:279–298

    PubMed  CAS  Google Scholar 

  • Fromter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235:9–13

    Article  PubMed  CAS  Google Scholar 

  • Fukushima S, Arai M, Cohen S, Jacobs JB, Friedell GH (1981) Scanning electron microscopy of cyclophosphamide-induced hyperplasia of the rat urinary bladder. Lab Invest 44:89–96

    PubMed  CAS  Google Scholar 

  • Hicks RM (1965) The fine structure of the transitional epithelium of rat ureter. J Cell Biol 26:25–48

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM (1975) The mammalian urinary bladder: an accomodating organ. Biol Rev 50:215–246

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM, Wakefield JJ (1976) Membrane changes during urothelial hyperplasia and neoplasia. Cancer Res 36:2502–2507

    PubMed  CAS  Google Scholar 

  • Hu P, Meyers S, Liang FX, Deng FM, Kachar B, Zeidel ML, Sun TT (2002) Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol 283:F1200–F1207

    PubMed  CAS  Google Scholar 

  • Jezernik K, Romih R, Mannherz HG, Koprivec D (2003) Immunohistochemical detection of apoptosis, proliferation and inducible nitric oxide synthase in rat urothelium damaged by cyclophosphamide treatment. Cell Biol Int 27:863–869

    Article  PubMed  CAS  Google Scholar 

  • Koss LG, Lavin P (1970) Effects of a single dose of cyclophosphamide on various organs in the rat. II. Response of urinary bladder epithelium according to strain and sex. J Natl Cancer Inst 44:1195–2000

    PubMed  CAS  Google Scholar 

  • Kreft ME, Romih R, Sterle M (2002) Antigenic and ultrastructural markers associated with urothelial cytodifferentiation in primary explant outgrowths of mouse bladder. Cell Biol Int 26:63–74

    Article  PubMed  CAS  Google Scholar 

  • Kreft ME, Sterle M, Veranic P, Jezernik K (2005) Urothelial injuries and the early wound healing response: tight junctions and urothelial cytodifferentiation. Histochem Cell Biol 123:529–539

    Article  PubMed  CAS  Google Scholar 

  • Kreft ME, Sterle M, Jezernik K (2006) Distribution of junction- and differentiation-related proteins in urothelial cells at the leading edge of primary explant outgrowths. Histochem Cell Biol 125:475–485

    Article  PubMed  CAS  Google Scholar 

  • Kreft ME, Di Giandomenico D, Beznoussenko GV, Resnik N, Mironov AA, Jezernik K (2010) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102:593–607

    Article  PubMed  CAS  Google Scholar 

  • Kreplak L, Wang H, Aebi U, Kong XP (2007) Atomic force microscopy of mammalian urothelial surface. J Mol Biol 374:365–373

    Article  PubMed  CAS  Google Scholar 

  • Kunze E, Köhnecke B, Engelhardt W, Steinröder H, Brock N, Pohl J (1984) Effect of the uroprotector sodium 2-mercaptoethane sulfonate (Mesna) on the proliferation of the bladder urothelium in the rat after administration of cyclophosphamide. Urol Int 39:61–67

    Article  PubMed  CAS  Google Scholar 

  • Lavelle J, Meyers S, Ramage R, Bastacky S, Doty D, Apodaca G, Zeidel ML (2002) Bladder permeability barrier: recovery from selective injury of surface epithelial cells. J Physiol Renal Physiol 283:F242–F253

    CAS  Google Scholar 

  • Lewis SA, Diamond JM (1976) Na+ transport by rabbit urinary bladder, a tight epithelium. J Memb Biol 28:1–40

    Article  CAS  Google Scholar 

  • Locher GW, Cooper EH (1970) Repair of rat urinary bladder epithelium following injury by cyclophosphamide. Invest Urol 8:116–123

    PubMed  CAS  Google Scholar 

  • Martin BF (1972) Cell replacement and differentiation in transitional epithelium: a histological and autoradiographic study of the guinea-pig bladder and ureter. J Anat 112:433–455

    PubMed  CAS  Google Scholar 

  • Min G, Zhou G, Schapira M, Sun TT, Kong XP (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116:4087–4094

    Article  PubMed  CAS  Google Scholar 

  • Molon-Noblot S, Boussiquet-Leroux C, Owen RA, Irisarri E, Duran-Cavagna G, Peter CP, Duprat P (1992) Rat urinary bladder hyperplasia induced by oral administration of carbonic anhydrase inhibitors. Toxicol Pathol 20:93–102

    Article  PubMed  CAS  Google Scholar 

  • Negrete HO, Lavelle JP, Berg J, Lewis SA, Zeidel ML (1996) Permeability properties of the intact mammalian bladder epithelium. Am J Physiol 271:F886–F894

    PubMed  CAS  Google Scholar 

  • Parsons CL, Boychuk D, Jones S, Hurst R, Callahan H (1990) Bladder surface glycosaminoglycans: an epithelial permeability barrier. J Urol 143:139–142

    PubMed  CAS  Google Scholar 

  • Romih R, Jezernik K, Masera A (1998) Uroplakins and cytokeratins in the regenerating rat urothelium after sodium saccharin treatment. Histochem Cell Biol 109:263–269

    Article  PubMed  CAS  Google Scholar 

  • Romih R, Veranic P, Jezernik K (1999) Actin filaments during terminal differentiation of urothelial cells in the rat urinary bladder. Histochem Cell Biol 112:375–380

    Article  PubMed  CAS  Google Scholar 

  • Romih R, Korosec P, de Mello W Jr, Jezernik K (2005) Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 320:259–268

    Article  PubMed  Google Scholar 

  • Truschel ST, Ruiz WG, Shulman T, Pilewski J, Sun TT, Zeidel ML, Apodaca G (1999) Primary uroepithelial cultures. A model system to analyze umbrella cell barrier function. J Biol Chem 274:15020–15029

    Article  PubMed  CAS  Google Scholar 

  • Veranic P, Jezernik K (2000) The response of junctional complexes to induced desquamation in mouse bladder urothelium. Biol Cell 92:105–113

    Article  PubMed  CAS  Google Scholar 

  • Veranic P, Erman A, Kerec-Kos M, Bogataj M, Mrhar A, Jezernik K (2009) Rapid differentiation of superficial urothelial cells after chitosan-induced desquamation. Histochem Cell Biol 131:129–139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Kristijan Jezernik and Prof. Dr. Rok Romih (University of Ljubljana, Faculty of Medicine, Institute of Cell Biology) for their continuous support. The authors thank Prof. Dr. Tung-Tien Sun (New York University Medical School) for the generous gift of uroplakin antibodies. The study was supported by the Slovenian Ministry of Higher Education, Science and Technology (Grant No P3-0108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Erdani Kreft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Višnjar, T., Kocbek, P. & Kreft, M.E. Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol 137, 177–186 (2012). https://doi.org/10.1007/s00418-011-0893-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0893-0

Keywords

Navigation