Skip to main content
Log in

Air–liquid and liquid–liquid interfaces influence the formation of the urothelial permeability barrier in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Optimizing culture conditions is known to be crucial for the differentiation of urothelial cell cultures and the formation of the permeability barrier. However, so far, no data exist to confirm if air–liquid (AL) and liquid–liquid (LL) interfaces are physiologically relevant during urothelial differentiation and barrier formation. To reveal the influence of interfaces on the proliferation, differentiation, and barrier formation of the urothelial cells (UCs) in vitro, we cultured UCs under four different conditions, i.e., at the AL or LL interfaces with physiological calcium concentration and without serum or without physiological calcium concentration and with serum. For each of the four models, the urothelial integrity was tested by measuring the transepithelial resistance (TER), and the differentiation stage was examined by immunolabeling of differentiation-related markers and ultrastructural analysis. We found that the UCs at a LL interface, regardless of the presence or absence of calcium or serum, form the urothelium with more cell layers and achieve a higher TER than UCs at an AL interface. However, UCs grown at an AL interface with physiological concentration of calcium in medium form only one- to two-layered urothelium of UCs, which are larger and express more differentiation-related proteins uroplakins than UCs in other models. These results demonstrate that the interface itself can play a major, although so-far neglected, role in urothelial physiology, particularly in the formation of the urothelial permeability barrier in vitro and the regulatory mechanisms related with urothelial differentiation. In the study, the culturing of UCs in three successive steps is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Abraham G.; Zizzadoro C.; Kacza J.; Ellenberger C.; Abs V.; Franke J.; Schoon H. A.; Seeger J.; Tesfaigzi Y.; Ungemach F. R. Growth and differentiation of primary and passaged equine bronchial epithelial cells under conventional and air–liquid-interface culture conditions. BMC Vet Res 7: 26; 2011.

    Article  PubMed  Google Scholar 

  • Acharya P.; Beckel J.; Ruiz W. G.; Wang E.; Rojas R.; Birder L.; Apodaca G. Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and −12 in bladder epithelium. Am J Physiol Renal Physiol 287: F305–318; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bebok Z.; Tousson A.; Schwiebert L. M.; Venglarik C. J. Improved oxygenation promotes CFTR maturation and trafficking in MDCK monolayers. Am J Physiol Cell Physiol 280: C135–145; 2001.

    PubMed  CAS  Google Scholar 

  • Chang J. E.; Basu S. K.; Lee V. H. Air-interface condition promotes the formation of tight corneal epithelial cell layers for drug transport studies. Pharm Res 17: 670–676; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cross W. R.; Eardley I.; Leese H. J.; Southgate J. A biomimetic tissue from cultured normal human urothelial cells: analysis of physiological function. Am J Physiol Renal Physiol 289: F459–468; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Gauvin R.; Larouche D.; Marcoux H.; Guignard R.; Auger FA.; Germain L. Minimal contraction for tissue-engineered skin substitutes when matured at the air–liquid interface. J Tissue Eng Regen Med. doi:10.1002/term.543; 2012.

  • Gu Y.; Wang C.; Cohen A. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett 577: 357–360; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Guhe C.; Follmann W. Growth and characterization of porcine urinary bladder epithelial cells in vitro. Am J Physiol 266: F298–308; 1994.

    PubMed  CAS  Google Scholar 

  • Hicks R. M. The mammalian urinary bladder: an accommodating organ. Biol Rev Camb Philos Soc 50: 215–246; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Hu P.; Meyers S.; Liang F. X.; Deng F. M.; Kachar B.; Zeidel M. L.; Sun T. T. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol 283: F1200–1207; 2002.

    PubMed  CAS  Google Scholar 

  • Kreft M. E.; Di Giandomenico D.; Beznoussenko G. V.; Resnik N.; Mironov A. A.; Jezernik K. Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102: 593–607; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kreft M. E.; Hudoklin S.; Sterle M. Establishment and characterization of primary and subsequent subcultures of normal mouse urothelial cells. Folia Biol (Praha) 51: 126–132; 2005b.

    CAS  Google Scholar 

  • Kreft M. E.; Jezernik K.; Kreft M.; Romih R. Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann N Y Acad Sci 1152: 18–29; 2009a.

    Article  PubMed  Google Scholar 

  • Kreft M. E.; Robenek H. Freeze-fracture replica immunolabelling reveals urothelial plaques in cultured urothelial cells. PloS One 7: e38509; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Kreft M. E.; Romih R.; Kreft M.; Jezernik K. Endocytotic activity of bladder superficial urothelial cells is inversely related to their differentiation stage. Differentiation 77: 48–59; 2009b.

    Article  PubMed  CAS  Google Scholar 

  • Kreft M. E.; Romih R.; Sterle M. Antigenic and ultrastructural markers associated with urothelial cytodifferentiation in primary explant outgrowths of mouse bladder. Cell Biol Int 26: 63–74; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kreft M. E.; Sterle M.; Jezernik K. Distribution of junction- and differentiation-related proteins in urothelial cells at the leading edge of primary explant outgrowths. Histochem Cell Biol 125: 475–485; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kreft M. E.; Sterle M.; Veranic P.; Jezernik K. Urothelial injuries and the early wound healing response: tight junctions and urothelial cytodifferentiation. Histochem Cell Biol 123: 529–539; 2005a.

    Article  PubMed  CAS  Google Scholar 

  • Lee M. K.; Yoo J. W.; Lin H.; Kim Y. S.; Kim D. D.; Choi Y. M.; Park S. K.; Lee C. H.; Roh H. J. Air–liquid interface culture of serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Drug Deliv 12: 305–311; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lewis S. A.; Diamond J. M. Na+ transport by rabbit urinary bladder, a tight epithelium. J Membr Biol 28: 1–40; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Liang F. X.; Riedel I.; Deng F. M.; Zhou G.; Xu C.; Wu X. R.; Kong X. P.; Moll R.; Sun T. T. Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochem J 355: 13–18; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lin H.; Li H.; Cho H. J.; Bian S.; Roh H. J.; Lee M. K.; Kim J. S.; Chung S. J.; Shim C. K.; Kim D. D. Air–liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci 96: 341–350; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Miessen K.; Einspanier R.; Schoen J. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri. BMC Vet Res 8: 31; 2012.

    Article  PubMed  Google Scholar 

  • Miessen K.; Sharbati S.; Einspanier R.; Schoen J. Modelling the porcine oviduct epithelium: a polarized in vitro system suitable for long-term cultivation. Theriogenology 76: 900–910; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Negrete H. O.; Lavelle J. P.; Berg J.; Lewis S. A.; Zeidel M. L. Permeability properties of the intact mammalian bladder epithelium. Am J Physiol 271: F886–894; 1996.

    PubMed  CAS  Google Scholar 

  • Nossol C.; Diesing A. K.; Walk N.; Faber-Zuschratter H.; Hartig R.; Post A.; Kluess J.; Rothkötter H. J.; Kahlert S. Air–liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC). Histochem Cell Biol 136: 103–115; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Pariente J. L.; Bordenave L.; Bareille R.; Baquey C.; Le Guillou M. Cultured differentiated human urothelial cells in the biomaterials field. Biomaterials 21: 835–839; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ram-Liebig G.; Meye A.; Hakenberg O. W.; Haase M.; Baretton G.; Wirth M. P. Induction of proliferation and differentiation of cultured urothelial cells on acellular biomaterials. BJU Int 94: 922–927; 2004.

    Article  PubMed  Google Scholar 

  • Rodier F.; Campisi J. Four faces of cellular senescence. J Cell Biol 192: 547–556; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Romih R.; Korosec P.; de Mello W.; Jr J. K. Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 320: 259–268; 2005.

    Article  PubMed  Google Scholar 

  • Southgate J.; Hutton K. A.; Thomas D. F.; Trejdosiewicz L. K. Normal human urothelial cells in vitro: proliferation and induction of stratification. Lab Invest 71: 583–594; 1994.

    PubMed  CAS  Google Scholar 

  • Truschel S. T.; Ruiz W. G.; Shulman T.; Pilewski J.; Sun T. T.; Zeidel M. L.; Apodaca G. Primary uroepithelial cultures. A model system to analyze umbrella cell barrier function. J Biol Chem 274: 15020–15029; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Turner A. M.; Subramaniam R.; Thomas D. F.; Southgate J. Generation of a functional, differentiated porcine urothelial tissue in vitro. Eur Urol 54: 1423–1432; 2008.

    Article  PubMed  Google Scholar 

  • Varley C. L.; Southgate J. Organotypic and 3D reconstructed cultures of the human bladder and urinary tract. Methods Mol Biol 695: 197–211; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Veranic P.; Jezernik K. Trajectorial organisation of cytokeratins within the subapical region of umbrella cells. Cell Motil Cytoskeleton 53: 317–325; 2002.

    Article  PubMed  Google Scholar 

  • Veranic P.; Romih R.; Jezernik K. What determines differentiation of urothelial umbrella cells? Eur J Cell Biol 83: 27–34; 2004.

    Article  PubMed  Google Scholar 

  • Visnjar T.; Kocbek P.; Kreft M. E. Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol 137: 177–186; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Wu X. R.; Manabe M.; Yu J.; Sun T. T. Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. J Biol Chem 265: 19170–19179; 1990.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Kristijan Jezernik and Prof. Dr. Rok Romih for their continuous support and Eva Lasič for checking the English of the manuscript. The study was supported by the Slovenian Research Agency ARRS (number P3-0108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Erdani Kreft.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Višnjar, T., Kreft, M.E. Air–liquid and liquid–liquid interfaces influence the formation of the urothelial permeability barrier in vitro. In Vitro Cell.Dev.Biol.-Animal 49, 196–204 (2013). https://doi.org/10.1007/s11626-013-9585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9585-5

Keywords

Navigation