Skip to main content
Log in

Effects of leptin and adiponectin on proliferation and protein metabolism of porcine myoblasts

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The aim of this study was to show the abundance of leptin and adiponectin receptors (LEPR, ADIPOR1, ADIPOR2) and to determine the direct effects of leptin and adiponectin on the in vitro growth of porcine skeletal muscle cells. ADIPOR1 and ADIPOR2 were abundant at mRNA and protein level in proliferating and differentiating myoblast cultures derived from semimembranosus and semitendinosus muscles of newborn piglets, whereas LEPR expression was close to the detection limit. Adiponectin (10, 20, 40 μg/ml) attenuated the proliferation of porcine myoblasts, measured as [³H]-thymidine incorporation and real-time monitoring of the cells in response to 24- and 48-h exposure, in a dose-dependent manner. This effect resulted from suppressed basic fibroblast growth factor (bFGF)-mediated stimulation of DNA synthesis in serum-free medium (SFM) containing bFGF. No effects of leptin (5, 10, 20, 40, 80 ng/ml) on myoblast proliferation in SFM were detectable. Neither leptin nor adiponectin altered protein synthesis and degradation in differentiating porcine myoblasts cultured in SFM. The results on receptor abundance suggest that porcine skeletal muscle cells may be sensitive to adiponectin and leptin. However, except via inhibitory interaction of adiponectin with bFGF, these adipokines appear not to affect in vitro proliferation and protein metabolism of porcine muscle cells directly under serum-free culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arita Y, Kihara S, Ouchi N et al (2002) Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 105:2893–2898

    Article  PubMed  CAS  Google Scholar 

  • Ballard FJ (1982) Regulation of protein accumulation in cultured cells. Biochem J 208:275–287

    PubMed  CAS  Google Scholar 

  • Berg AH, Combs TP, Scherer PE (2002) ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 13:84–89

    Article  PubMed  CAS  Google Scholar 

  • Blanton JR Jr, Grant AL, McFarland DC, Robinson JP, Bidwell CA (1999) Isolation of two populations of myoblasts from porcine skeletal muscle. Muscle Nerve 22:43–50

    Article  PubMed  Google Scholar 

  • Bonnet M, Cassar-Malek I, Chilliard Y, Picard B (2010) Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal 4:1093–1109

    Article  PubMed  CAS  Google Scholar 

  • Brochu-Gaudreau K, Rehfeldt C, Blouin R, Bordignon V, Murphy BD, Palin MF (2010) Adiponectin action from head to toe. Endocrine 37:11–32

    Article  PubMed  CAS  Google Scholar 

  • Brüssow KP, Schneider F, Tuchscherer A, Egerszegi I, Ratky J (2008) Comparison of LH, leptin and progesterone levels in the systemic circulation (Vena jugularis) and near the ovarian circulation (Vena cava caudalis) during the oestrous cycle in Mangalica and Landrace gilts. J Reprod Dev 54:431–438

    Article  PubMed  Google Scholar 

  • Buechler C, Wanninger J, Neumeier M (2010) Adiponectin receptor binding proteins—recent advances in elucidating adiponectin signalling pathways. FEBS Lett 584:4280–4286

    Article  PubMed  CAS  Google Scholar 

  • Cameron ND, Penman JC, McCullough E (2000) Serum leptin concentration in pigs selected for high or low daily food intake. Genet Res 75:209–213

    Article  PubMed  CAS  Google Scholar 

  • Carbo N, Ribas V, Busquets S, Alvarez B, Lopez-Soriano FJ, Argiles JM (2000) Short-term effects of leptin on skeletal muscle protein metabolism in the rat. J Nutr Biochem 11:431–435

    Article  PubMed  CAS  Google Scholar 

  • Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G (2005) Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48:132–139

    Article  PubMed  CAS  Google Scholar 

  • Delaigle AM, Jonas JC, Bauche IB, Cornu O, Brichard SM (2004) Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology 145:5589–5597

    Article  PubMed  CAS  Google Scholar 

  • Ding ST, Liu BH, Ko YH (2004) Cloning and expression of porcine adiponectin and adiponectin receptor 1 and 2 genes in pigs. J Anim Sci 82:3162–3174

    PubMed  CAS  Google Scholar 

  • Ding Q, Wang Z, Chen Y (2009) Endocytosis of adiponectin receptor 1 through a clathrin- and Rab5-dependent pathway. Cell Res 19:317–327

    Article  PubMed  CAS  Google Scholar 

  • Doumit ME, Cook DR, Merkel RA (1993) Fibroblast growth factor, epidermal growth factor, insulin-like growth factors, and platelet-derived growth factor-BB stimulate proliferation of clonally derived porcine myogenic satellite cells. J Cell Physiol 157:326–332

    Article  PubMed  CAS  Google Scholar 

  • Doumit ME, Cook DR, Merkel RA (1996) Testosterone up-regulates androgen receptors and decreases differentiation of porcine myogenic satellite cells in vitro. Endocrinology 137:1385–1394

    Article  PubMed  CAS  Google Scholar 

  • Du M, Shen QW, Zhu MJ, Ford SP (2007) Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase. J Anim Sci 85:919–927

    Article  PubMed  CAS  Google Scholar 

  • Erkens T, van Poucke M, Vandesompele J, Goossens K, van Zeveren A, Peelman LJ (2006) Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGCIA. BMC Biotechnol 6:41

    Article  PubMed  Google Scholar 

  • Fiaschi T, Tedesco FS, Giannoni E, Diaz-Manera J, Parri M, Cossu G, Chiarugi P (2010) Globular adiponectin as a complete mesoangioblast regulator: role in proliferation, survival, motility, and skeletal muscle differentiation. Mol Biol Cell 21:848–859

    Article  PubMed  CAS  Google Scholar 

  • Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB (2007) Adipose tissue as an endocrine organ: from theory to practice. J Pediatr (Rio J) 83:S192–S203

    Article  Google Scholar 

  • Frühbeck G (2006) Intracellular signalling pathways activated by leptin. Biochem J 393:7–20

    Article  PubMed  Google Scholar 

  • Frühbeck G (2008) Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol Biol 456:1–22

    Article  PubMed  Google Scholar 

  • Gimeno RE, Klaman LD (2005) Adipose tissue as an active endocrine organ: recent advances. Curr Opin Pharmacol 5:122–128

    Article  PubMed  CAS  Google Scholar 

  • Guerra B, Santana A, Fuentes T, Delgado-Guerra S, Cabrera-Socorro A, Dorado C, Calbet JA (2007) Leptin receptors in human skeletal muscle. J Appl Physiol 102:1786–1792

    Article  PubMed  CAS  Google Scholar 

  • Harper JM, Soar JB, Buttery PJ (1987) Changes in protein metabolism of ovine primary muscle cultures on treatment with growth hormone, insulin, insulin-like growth factor I or epidermal growth factor. J Endocrinol 112:87–96

    Article  PubMed  CAS  Google Scholar 

  • Hauner H (2005) Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc 64:163–169

    Article  PubMed  CAS  Google Scholar 

  • Huber K, Petzold J, Rehfeldt C, Ender K, Fiedler I (2007) Muscle energy metabolism: structural and functional features in different types of porcine striated muscles. J Muscle Res Cell Motil 28:249–258

    Article  PubMed  CAS  Google Scholar 

  • Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA 101:10308–10313

    Article  PubMed  CAS  Google Scholar 

  • Jacobi SK, Gabler NK, Ajuwon KM, Davis JE, Spurlock ME (2006) Adipocytes, myofibers, and cytokine biology: new horizons in the regulation of growth and body composition. J Anim Sci 84(Suppl):E140–E149

    PubMed  Google Scholar 

  • Jurimae J, Jurimae T (2007) Plasma adiponectin concentration in healthy pre- and postmenopausal women: relationship with body composition, bone mineral, and metabolic variables. Am J Physiol Endocrinol Metab 293:E42–E47

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    Article  PubMed  CAS  Google Scholar 

  • Kalbe C, Mau M, Rehfeldt C (2008) Developmental changes and the impact of isoflavones on mRNA expression of IGF-I receptor, EGF receptor and related growth factors in porcine skeletal muscle cell cultures. Growth Horm IGF Res 18:424–433

    Article  PubMed  CAS  Google Scholar 

  • Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring HU (1997) Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 40:1358–1362

    Article  PubMed  CAS  Google Scholar 

  • Kosel D, Heiker JT, Juhl C, Wottawah CM, Bluher M, Morl K, Beck-Sickinger AG (2010) Dimerization of adiponectin receptor 1 is inhibited by adiponectin. J Cell Sci 123:1320–1328

    Article  PubMed  CAS  Google Scholar 

  • Krause MP, Liu Y, Vu V, Chan L, Xu A, Riddell MC, Sweeney G, Hawke TJ (2008) Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function. Am J Physiol Cell Physiol 295:C203–C212

    Article  PubMed  CAS  Google Scholar 

  • Kupchak BR, Garitaonandia I, Villa NY, Smith JL, Lyons TJ (2009) Antagonism of human adiponectin receptors and their membrane progesterone receptor paralogs by TNFalpha and a ceramidase inhibitor. Biochemistry 48:5504–5506

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lamosova D, Zeman M (2001) Effect of leptin and insulin on chick embryonic muscle cells and hepatocytes. Physiol Res 50:183–189

    PubMed  CAS  Google Scholar 

  • Ledoux S, Campos DB, Lopes FL, Dobias-Goff M, Palin MF, Murphy BD (2006) Adiponectin induces periovulatory changes in ovarian follicular cells. Endocrinology 147:5178–5186

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Barb CR, Matteri RL, Kraeling RR, Chen X, Meinersmann RJ, Rampacek GB (2000) Long form leptin receptor mRNA expression in the brain, pituitary, and other tissues in the pig. Domest Anim Endocrinol 19:53–61

    Article  PubMed  CAS  Google Scholar 

  • Liu BH, Wang PH, Wang YC, Cheng WM, Mersmann HJ, Ding ST (2008) Fasting regulates the expression of adiponectin receptors in young growing pigs. J Anim Sci 86:3377–3384

    Article  PubMed  CAS  Google Scholar 

  • Lord E, Ledoux S, Murphy BD, Beaudry D, Palin MF (2005) Expression of adiponectin and its receptors in swine. J Anim Sci 83:565–578

    PubMed  CAS  Google Scholar 

  • Maroni P, Bendinelli P, Piccoletti R (2003) Early intracellular events induced by in vivo leptin treatment in mouse skeletal muscle. Mol Cell Endocrinol 201:109–121

    Article  PubMed  CAS  Google Scholar 

  • Maroni P, Bendinelli P, Piccoletti R (2005) Intracellular signal transduction pathways induced by leptin in C2C12 cells. Cell Biol Int 29:542–550

    Article  PubMed  CAS  Google Scholar 

  • Matsubara M, Katayose S, Maruoka S (2003) Decreased plasma adiponectin concentrations in nondiabetic women with elevated homeostasis model assessment ratios. Eur J Endocrinol 148:343–350

    Article  PubMed  CAS  Google Scholar 

  • Mau M, Oksbjerg N, Rehfeldt C (2008) Establishment and conditions for growth and differentiation of a myoblast cell line derived from the semimembranosus muscle of newborn piglets. In Vitro Cell Dev Biol Anim 44:1–5

    Article  PubMed  Google Scholar 

  • Milligan G (2008) A day in the life of a G protein-coupled receptor: the contribution to function of G protein-coupled receptor dimerization. Br J Pharmacol 153(Suppl 1):S216–S229

    PubMed  CAS  Google Scholar 

  • Miner JL (2004) The adipocyte as an endocrine cell. J Anim Sci 82:935–941

    PubMed  CAS  Google Scholar 

  • Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Yakabe Y (2007) AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem 71:1650–1656

    Article  PubMed  CAS  Google Scholar 

  • Novikoff AB, Shin WY, Drucker J (1961) Mitochondrial localization of oxidative enzymes: staining results with two tetrazolium salts. J Biophys Biochem Cytol 9:47–61

    Article  PubMed  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  • Ramsay TG (2003) Porcine leptin inhibits protein breakdown and stimulates fatty acid oxidation in C2C12 myotubes. J Anim Sci 81:3046–3051

    PubMed  CAS  Google Scholar 

  • Rehfeldt C, Kalbe C, Nürnberg G, Mau M (2009) Dose-dependent effects of genistein and daidzein on protein metabolism in porcine myotube cultures. J Agric Food Chem 57:852–857

    Article  PubMed  CAS  Google Scholar 

  • Rehfeldt C, Walther K (1997) A combined assay for DNA, protein, and incorporated [³H] label in cultured muscle cells. Anal Biochem 251:294–297

    Article  PubMed  CAS  Google Scholar 

  • Rehfeldt C, Walther K, Albrecht E, Nurnberg G, Renne U, Bunger L (2002) Intrinsic properties of muscle satellite cells are changed in response to long-term selection of mice for different growth traits. Cell Tissue Res 310:339–348

    Article  PubMed  CAS  Google Scholar 

  • Siawrys G, Kaminski T, Smolinska N, Przala J (2007) Expression of leptin and long form of leptin receptor genes and proteins in pituitary of cyclic and pregnant pigs. J Physiol Pharmacol 58:845–857

    PubMed  CAS  Google Scholar 

  • Smolinska N, Kaminski T, Siawrys G, Przala J (2007) Long form of leptin receptor gene and protein expression in the porcine ovary during the estrous cycle and early pregnancy. Reprod Biol 7:17–39

    PubMed  Google Scholar 

  • Solberg R, Aas V, Thoresen GH, Kase ET, Drevon CA, Rustan AC, Reseland JE (2005) Leptin expression in human primary skeletal muscle cells is reduced during differentiation. J Cell Biochem 96:89–96

    Article  PubMed  CAS  Google Scholar 

  • Sweeney G, Keen J, Somwar R, Konrad D, Garg R, Klip A (2001) High leptin levels acutely inhibit insulin-stimulated glucose uptake without affecting glucose transporter 4 translocation in l6 rat skeletal muscle cells. Endocrinology 142:4806–4812

    Article  PubMed  CAS  Google Scholar 

  • Steinberg GR, Rush JW, Dyck DJ (2003) AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am J Physiol Endocrinol Metab 284:E648–E654

    PubMed  CAS  Google Scholar 

  • Su YX, Deng HC, Zhang MX, Long J, Peng ZG (2012) Adiponectin inhibits PDGF-induced mesangial cell proliferation: regulation of mammalian target of rapamycin-mediated survival pathway by adenosine 5-monophosphate-activated protein kinase. Horm Metab Res 44:21–27

    Article  PubMed  CAS  Google Scholar 

  • Tajmir P, Kwan JJ, Kessas M, Mozammel S, Sweeney G (2003) Acute and chronic leptin treatment mediate contrasting effects on signaling, glucose uptake, and GLUT4 translocation in L6-GLUT4myc myotubes. J Cell Physiol 197:122–130

    Article  PubMed  CAS  Google Scholar 

  • Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34

    Article  PubMed  CAS  Google Scholar 

  • Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang CC, Itani SI, Lodish HF, Ruderman NB (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 99:16309–16313

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, Xu A (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280:18341–18347

    Article  PubMed  CAS  Google Scholar 

  • Whitley NC, O’Brien DJ, Quinn RW, Keisler DH, Walker EL, Brown MA (2009) Milk leptin in sows and blood leptin and growth of their offspring. J Anim Sci 87:1659–1663

    Article  PubMed  CAS  Google Scholar 

  • Wylie ARG (2011) Leptin in farm animals: where are we and where can we go? Animal 5:246–267

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Seger R, Rivera AJ (1999) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946

    Google Scholar 

  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Google Scholar 

  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    Google Scholar 

  • Yi Z, Hathaway MR, Dayton WR, White ME (2001) Effects of growth factors on insulin-like growth factor binding protein (IGFBP) secretion by primary porcine satellite cell cultures. J Anim Sci 79:2820–2826

    PubMed  CAS  Google Scholar 

  • Yu T, Luo G, Zhang L, Wu J, Zhang H, Yang G (2008) Leptin promotes proliferation and inhibits differentiation in porcine skeletal myoblasts. Biosci Biotechnol Biochem 72:13–21

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Du J, Hu Z, Walsh K, Wang XH (2007) Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and Fatty acids. Endocrinology 148:5696–5705

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Angela Steinborn and Hilke Brandt are gratefully acknowledged for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Rehfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Will, K., Kalbe, C., Kuzinski, J. et al. Effects of leptin and adiponectin on proliferation and protein metabolism of porcine myoblasts. Histochem Cell Biol 138, 271–287 (2012). https://doi.org/10.1007/s00418-012-0949-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0949-9

Keywords

Navigation