Skip to main content
Log in

Fatty acids promote bovine skeletal muscle satellite cell differentiation by regulating ELOVL3 expression

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Fatty acids (FAs) play essential roles in regulating differentiation and proliferation by affecting gene expression in various cell types. However, their potential functions in bovine cells remain unclear. Herein, we examine the differentiation and proliferation of bovine skeletal muscle-derived satellite cells (MDSCs) after incubation with three types of representative FAs (palmitic acid, oleic acid and docosahexaenoic acid) by western blotting, immunofluorescence assays, flow cytometry analysis and EdU incorporation assays. The myotube fusion rate, myotube length and expression levels of muscle differentiation-related gene myogenin (MYOG) and myosin heavy chain 3 (MYH3) increased significantly, although the FAs did not affect proliferation. Additionally, FA-induced bovine MDSC differentiation increased ELOVL3 expression and relocation of ELOVL3 to cytoplasmic lipid droplets in the differentiation of bovine MDSCs. Moreover, the effect of FAs on bovine MDSC differentiation was inhibited upon ELOVL3 downregulation. Collectively, these data indicate that FAs promote bovine MDSC differentiation by regulating ELOVL3 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen RE, Luiten LS, Dodson MV (1985) Effect of insulin and linoleic acid on satellite cell differentiation. J Anim Sci 60:1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Bennett AM, Tonks NK (1997) Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278:1288–1291

    Article  PubMed  CAS  Google Scholar 

  • Bosma M (2016) Lipid droplet dynamics in skeletal muscle. Exp Cell Res 340:80–186

    Article  CAS  Google Scholar 

  • Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12:349–361

    Article  PubMed  CAS  Google Scholar 

  • Briolay A, Jaafar R, Nemoz G, Bessueille L (2013) Myogenic differentiation and lipid-raft composition of L6 skeletal muscle cells are modulated by PUFAs. Biochim Biophys Acta 1828:602–613

    Article  PubMed  CAS  Google Scholar 

  • Cesar AS, Regitano LC, Poleti MD, Andrade SC, Tizioto PC, Oliveira PS, Felício AM, do Nascimento ML, Chaves AS, Lanna DP, Tullio RR, Nassu RT, Koltes JE, Fritz-Waters E, Mourão GB, Zerlotini-Neto A, Reecy JM, Coutinho LL (2016) Differences in the skeletal muscle transcriptome profile associated with extreme values of fatty acids content. BMC Genomics 17:961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke SD (2000) Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br J Nutr 83:S59–S66

    Article  PubMed  CAS  Google Scholar 

  • Deisenroth C, Itahana Y, Tollini L, Jin Y, Zhang Y (2011) p53-Inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation. J Biol Chem 286:28343–28356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denic V, Weissman JS (2007) A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130:663–677

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Burguera B, Jensen MD (2000) Kinetics of intramuscular triglyceride fatty acids in exercising humans. J Appl Physiol 89:2057–2064

    Article  PubMed  CAS  Google Scholar 

  • Han RH, Wang M, Fang X, Han X (2013) Simulation of triacylglycerol ion profiles: bioinformatics for interpretation of triacylglycerol biosynthesis. J Lipid Res 54:1023–1032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33:469–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurley MS, Flux C, Salter AM, Brameld JM (2006) Effects of fatty acids on skeletal muscle cell differentiation in vitro. Br J Nutr 95:623–630

    Article  PubMed  CAS  Google Scholar 

  • Ichimura A, Hirasawa A, Hara T, Tsujimoto G (2009) Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat 89:82–88

    Article  PubMed  CAS  Google Scholar 

  • Ji L, Gupta M, Feldman BJ (2016) Vitamin D regulates fatty acid composition in subcutaneous adipose tissue through Elovl3. Endocrinology 157:91–97

    Article  PubMed  CAS  Google Scholar 

  • Jump DB (2009) Mammalian fatty acid elongases. Methods Mol Biol 579:375–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanaley JA, Shadid S, Sheehan MT, Guo Z, Jensen MD (2009) Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans. J Physiol 587:5939–5950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JH, Tachibana H, Morinaga Y, Fujimura Y, Yamada K (2009) Modulation of proliferation and differentiation of C2C12 skeletal muscle cells by fatty acids. Life Sci 84:415–420

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Xu JH, Tong HL, Li SF, Yan YQ (2017) Effect of ELOVL3 expression on bovine skeletal muscle-derived satellite cell differentiation. Biochem Biophys Res Commun S0006-291X:31476

    Google Scholar 

  • Lu G, Morinelli TA, Meier KE, Rosenzweig SA, Egan BM (1996) Oleic acid-induced mitogenic signaling in vascular smooth muscle cells. A role for protein kinase C. Circ Res 79:611–618

    Article  PubMed  CAS  Google Scholar 

  • Meex RC, Hoy AJ, Mason RM, Martin SD, McGee SM, Bruce CR, Watt MJ (2015) ATGL-mediated triglyceride turnover and the regulation of mitochondrial capacity in skeletal muscle. Am J Physiol Endocrinol Metab 308:E960–E970

    Article  PubMed  CAS  Google Scholar 

  • Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD (2001) Identification of mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276:45358–45366

    Article  PubMed  CAS  Google Scholar 

  • Nakamura MT, Nara TY (2003) Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot Essent Fatty Acids 68:145–150

    Article  PubMed  CAS  Google Scholar 

  • Oh CS, Toke DA, Mandala S, Martin CE (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272:17376–17384

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Suto S, Yamanaka M, Mizutani Y, Mitsutake S, Igarashi Y, Sassa T, Kihara (2010) A ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci U S A 107:18439–18444

    Article  PubMed  PubMed Central  Google Scholar 

  • Song J, Kwon N, Lee MH, Ko YG, Lee JH, Kim OY (2014) Association of serum phospholipid PUFAs with cardiometabolic risk: beneficial effect of DHA on the suppression of vascular proliferation/inflammation. Clin Biochem 47:361–368

    Article  PubMed  CAS  Google Scholar 

  • Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45:199–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunaga H, Matsui H, Anjo S, Syamsunarno MR, Koitabashi N, Iso T, Matsuzaka T, Shimano H, Yokoyama T, Kurabayashi M (2016) Elongation of long-chain fatty acid family member 6 (Elovl6)-driven fatty acid metabolism regulates vascular smooth muscle cell phenotype through AMP-activated protein kinase/Krüppel-like factor 4 (AMPK/KLF4) signaling. J Am Heart Assoc 5:e004014

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong HL, Yin HY, Zhang WW, Hu Q, Li SF, Yan YQ et al (2015) Transcriptional profiling of bovine muscle-derived satellite cells during differentiation in vitro by high throughput rna sequencing. Cell Mol Biol Lett 20(3):351–373

    Article  PubMed  CAS  Google Scholar 

  • Tvrdik P, Westerberg R, Silve S, Asadi A, Jakobsson A, Cannon B, Loison G, Jacobsson A (2000) Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol 49:707–718

    Article  Google Scholar 

  • Zadravec D, Brolinson A, Fisher RM, Carneheim C, Csikasz RI, Bertrand-Michel J, Boren J, Guillou H, Rudling M, Jacobsson A (2010) Ablation of the very-long-chain fatty acid elongase ELOVL3 in mice leads to constrained lipid storage and resistance to diet-induced obesity. FASEB J 24:4366–4377

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the breeding program for high-quality new varieties of genetically modified bovines from the National Major Transgenic Project [grant number 2014ZX08007-002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqin Yan.

Ethics declarations

The protocol utilised in this study to harvest cells from animal tissues was approved by the Animal Care Commission of the Northeast Agricultural University and Heilongjiang, P.R. China. Skeletal muscle tissues from newborn Chinese Simmental calves were obtained from the Shuangcheng abattoir, a local slaughterhouse in Heilongjiang, P.R. China.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Liu, D., Yin, H. et al. Fatty acids promote bovine skeletal muscle satellite cell differentiation by regulating ELOVL3 expression. Cell Tissue Res 373, 499–508 (2018). https://doi.org/10.1007/s00441-018-2812-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2812-3

Keywords

Navigation