Skip to main content

Advertisement

Log in

Identification of fucosylated glycoconjugates in Xenopus laevis testis by lectin histochemistry

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Glycoconjugates play roles in many physiological and pathological processes. Previous works have shown important functions mediated by glycans in spermatogenesis, and the carbohydrate composition of testis has been studied by several approaches, including lectin-histochemical methods. However, the testis of Xenopus laevis, an animal model extensively employed in biochemical, cell and developmental research, has not yet been analysed. The aim of this work was to carry out a histochemical study of the fucose (Fuc)-containing glycoconjugates of Xenopus testis by means of lectins, combined with deglycosylation pretreatments. Four Fuc-binding lectins were used: orange peel (Aleuria aurantia) lectin (AAL), gorse seed (Ulex europaeus) agglutinin-I (UEA-I), fresh water eel (Anguilla anguilla) agglutinin (AAA), and asparagus pea (Lotus tetragonolobus) agglutinin (LTA), each recognizing different forms of fucosylated glycans. Labelling with UEA-I, which preferably binds Fucα(1,2) containing oligosaccharides, did not show any appreciable staining. LTA, specific for Fucα(1,3), and AAA, which binds Fucα(1,2), labelled spermatocytes and spermatids, but no labelling was seen when the histochemical procedure was carried out after either β-elimination (which removes O-linked oligosaccharides) or incubation with PNGase F (which removes N-linked oligosaccharides), suggesting that fucosylated glycans are of both N- and O-linked types. AAL, which has its highest affinity to Fucα(1,6), but also recognizes Fucα(1,2) and Fucα(1,3), labelled the whole testis, and the staining remained when the histochemical method was performed after either β-elimination or incubation with PNGase F. Labelling with AAL could be explained by the fact that this lectin could be binding to diverse fucosylated glycans in N- and O-glycans, and even in glycolipids. The importance of these glycans is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akama TO, Nakagawa H, Sugihara K, Narisawa S, Ohyama C, Nishimura S, O’Brien DA, Moremen KW, Millan JL, Fukuda MN (2002) Germ cell survival through carbohydrate-mediated interaction with Sertoli cells. Science 295:124–127

    Article  PubMed  Google Scholar 

  • Alonso E, Sáez FJ, Madrid JF, Hernández F (2001) Galactosides and sialylgalactosides in O-linked oligosaccharides of the primordial germ cells in Xenopus embryos. Glycoconj J 18:225–230

    Article  PubMed  CAS  Google Scholar 

  • Anakwe OO, Gerton GL (1990) Acrosome biogenesis begins during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod 42:317–328

    Article  PubMed  CAS  Google Scholar 

  • Anakwe OO, Sharma S, Hardy DM, Gerton GL (1991) Guinea pig proacrosin is synthesized principally by round spermatids and contains O-linked as well as N-linked oligosaccharide side chains. Mol Reprod Dev 29:172–179

    Article  PubMed  CAS  Google Scholar 

  • Arenas MI, Madrid JF, Bethencourt FR, Fraile B, Paniagua R (1998) Lectin histochemistry of the human testis. Int J Androl 21:332–342

    Article  PubMed  CAS  Google Scholar 

  • Arya M, Vanha-Perttula T (1984) Distribution of lectin binding in rat testis and epididymis. Andrologia 16:495–508

    Article  PubMed  CAS  Google Scholar 

  • Arya M, Vanha-Perttula T (1985) Lectin-binding pattern of bull testis and epididymis. J Androl 6:230–242

    PubMed  CAS  Google Scholar 

  • Arya M, Vanha-Perttula T (1986) Comparison of lectin-staining pattern in testis and epididymis of gerbil, guinea pig, mouse, and nutria. Am J Anat 175:449–469

    Article  PubMed  CAS  Google Scholar 

  • Baldus SE, Thiele J, Park YO, Hanisch FG, Bara J, Fischer R (1996) Characterization of the binding specificity of Anguilla anguilla agglutinin (AAA) in comparison to Ulex europaeus agglutinin I (UEA-I). Glycoconj J 13:585–590

    Article  PubMed  CAS  Google Scholar 

  • Ballesta J, Martinez-Menarguez JA, Pastor LM, Aviles M, Madrid JF, Castells MT (1991) Lectin binding pattern in the testes of several tetrapod vertebrates. Eur J Basic Appl Histochem 35:107–117

    PubMed  CAS  Google Scholar 

  • Bermúdez D, Escalier D, Gallo JM, Viellefond A, Rius F, Pérez de Vargas I, Schrevel J (1994) Proacrosin as a marker of meiotic and post-meiotic germ cell differentiation: quantitative assessment of human spermatogenesis with a monoclonal antibody. J Reprod Fertil 100:567–575

    Article  PubMed  Google Scholar 

  • Cox JF, Fernandez P, Saravia F, Santa Maria A (1998) Use of propidium ioide and Pisum sativum for fast assessment of acrosome integrity in goat spermatozoa. Arch Med Vet 30:93–99

    Article  Google Scholar 

  • Cummings RD, Etzler ME (2009) Antibodies and lectins in glycan analysis. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 633–647

    Google Scholar 

  • Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 117:41–55

    Article  PubMed  CAS  Google Scholar 

  • Desantis S, Ventriglia G, Zubani D, Deflorio M, Megalofonou P, Acone F, Zarrilli A, Palmieri G, De MG (2006) Histochemical analysis of glycoconjugates in the domestic cat testis. Histol Histopathol 21:11–22

    PubMed  CAS  Google Scholar 

  • Etzler ME, Esko JD (2009) Free glycans as signalling molecules. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 523–529

    Google Scholar 

  • Fujimoto H, Tadano-Aritomi K, Tokumasu A, Ito K, Hikita T, Suzuki K, Ishizuka I (2000) Requirement of seminolipid in spermatogenesis revealed by UDP-galactose: ceramide galactosyltransferase-deficient mice. J Biol Chem 275:22623–22626

    Article  PubMed  CAS  Google Scholar 

  • Gabius HJ (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121

    Article  PubMed  CAS  Google Scholar 

  • Gabius HJ (2001) Glycohistochemistry: the why and how of detection and localization of endogenous lectins. Anat Histol Embryol 30:3–31

    Article  PubMed  CAS  Google Scholar 

  • Gabius HJ, Andre S, Kaltner H, Siebert HC (2002) The sugar code: functional lectinomics. Biochim Biophys Acta 1572:165–177

    PubMed  CAS  Google Scholar 

  • Gheri G, Vannelli GB, Marini M, Zappoli Thyrion GD, Gheri RG, Sgambati E (2004) Distributional map of the terminal and sub-terminal sugar residues of the glycoconjugates in the prepubertal and postpubertal testis of a subject affected by complete androgen insensitivity syndrome (Morris’s syndrome): lectin histochemical study. Histol Histopathol 19:1–8

    PubMed  CAS  Google Scholar 

  • Gómez-Santos L, Alonso E, Ferrer C, Zuasti A, Sáez FJ, Madrid JF (2007) Histochemical demonstration of two subtypes of O-linked oligosaccharides in the rat gastric glands. Microsc Res Tech 70:809–815

    Article  PubMed  CAS  Google Scholar 

  • Horan N, Yan L, Isobe H, Whitesides GM, Kahne D (1999) Nonstatistical binding of a protein to clustered carbohydrates. Proc Natl Acad Sci USA 96:11782–11786

    Article  PubMed  CAS  Google Scholar 

  • Horejsi V, Kocourek J (1978) Studies on lectins. XXXVI. Properties of some lectins prepared by affinity chromatography on O-glycosyl polyacrylamide gels. Biochim Biophys Acta 538:15–299

    Google Scholar 

  • Iwamori M, Domino SE (2004) Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of alpha(1, 2)fucosyltransferase genes. Biochem J 380:75–81

    Article  PubMed  CAS  Google Scholar 

  • Jones CJ, Morrison CA, Stoddart RW (1992a) Histochemical analysis of rat testicular glycoconjugates. 1. Subsets of N-linked saccharides in seminiferous tubules. Histochem J 24:319–326

    Article  PubMed  CAS  Google Scholar 

  • Jones CJ, Morrison CA, Stoddart RW (1992b) Histochemical analysis of rat testicular glycoconjugates. 2. Beta-galactosyl residues in O- and N-linked glycans in seminiferous tubules. Histochem J 24:327–336

    Article  PubMed  CAS  Google Scholar 

  • Kochibe N, Furukawa K (1980) Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. Biochemistry 19:2841–2846

    Article  PubMed  CAS  Google Scholar 

  • Kohn MJ, Kaneko KJ, DePamphilis ML (2005) DkkL1 (Soggy), a Dickkopf family member, localizes to the acrosome during mammalian spermatogenesis. Mol Reprod Dev 71:516–522

    Article  PubMed  CAS  Google Scholar 

  • Kopecny V, Cechova D, Zelezna B, Flechon JE, Motlik J, Pech V (1984) Studies on acrosome labelling of mammalian spermatozoa by radioactive sugars. Reprod Nutr Dev 24:419–429

    Article  PubMed  CAS  Google Scholar 

  • Kurohmaru M, Kobayashi H, Kanai Y, Hattori S, Nishida T, Hayashi Y (1995) Distribution of lectin binding in the testes of the musk shrew, Suncus murinus. J Anat 187(Pt 2):323–329

    PubMed  CAS  Google Scholar 

  • Labate M, Desantis S (1995) Histochemical analysis of lizard testicular glycoconjugates during the annual spermatogenetic cycle. Eur J Histochem 39:201–212

    PubMed  CAS  Google Scholar 

  • Lee MC, Damjanov I (1985) Lectin binding sites on human sperm and spermatogenic cells. Anat Rec 212:282–287

    Article  PubMed  CAS  Google Scholar 

  • Lee RT, Lee YC (2000) Affinity enhancement by multivalent lectin–carbohydrate interaction. Glycoconj J 17:543–551

    Article  PubMed  CAS  Google Scholar 

  • Loris R (2002) Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572:198–208

    PubMed  CAS  Google Scholar 

  • Malmi R, Frojdman K, Soderstrom KO (1990) Differentiation-related changes in the distribution of glycoconjugates in rat testis. Histochemistry 94:387–395

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Menarguez JA, Ballesta J, Aviles M, Castells MT, Madrid JF (1992) Cytochemical characterization of glycoproteins in the developing acrosome of rats. An ultrastructural study using lectin histochemistry, enzymes and chemical deglycosylation. Histochemistry 97:439–449

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Menarguez JA, Aviles M, Madrid JF, Castells MT, Ballesta J (1993) Glycosylation in Golgi apparatus of early spermatids of rat. A high resolution lectin cytochemical study. Eur J Cell Biol 61:21–33

    PubMed  CAS  Google Scholar 

  • Maylie-Pfenninger MF (1994) Developmentally regulated oligosaccharides in mouse spermatogenic cells. Arch Biochem Biophys 311:469–479

    Article  PubMed  CAS  Google Scholar 

  • Morokuma Y, Nakamura N, Kato A, Notoya M, Yamamoto Y, Sakai Y, Fukuda H, Yamashina S, Hirata Y, Hirose S (2007) MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids. J Biol Chem 282:24806–24815

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu T (2002) Development—carbohydrate recognition in spermatogenesis. Science 295:53–54

    Article  PubMed  CAS  Google Scholar 

  • Nizet V, Esko JD (2009) Bacterial and viral infections. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 537–551

    Google Scholar 

  • Oda Y, Senaha T, Matsuno Y, Nakajima K, Naka R, Kinoshita M, Honda E, Furuta I, Kakehi K (2003) A new fungal lectin recognizing alpha(1–6)-linked fucose in the N-glycan. J Biol Chem 278:32439–32447

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Katsuyama T, Hotchi M (1983) Histochemical application of mild alkaline hydrolysis for selective elimination of O-glycosidically linked glycoproteins. Stain Technol 58:309–312

    PubMed  CAS  Google Scholar 

  • Parillo F, Magi GE, Diverio S, Catone G (2009) Immunohistochemical and lectin histochemical analysis of the alpaca efferent ducts. Histol Histopathol 24:1–12

    PubMed  CAS  Google Scholar 

  • Pereira ME, Kisailus EC, Gruezo F, Kabat EA (1978) Immunochemical studies on the combining site of the blood group H-specific lectin 1 from Ulex europeus seeds. Arch Biochem Biophys 185:108–115

    Article  PubMed  CAS  Google Scholar 

  • Runnebaum IB, Schill WB, Topfer-Petersen E (1995) ConA-binding proteins of the sperm surface are conserved through evolution and in sperm maturation. Andrologia 27:81–90

    Article  PubMed  CAS  Google Scholar 

  • Sáez FJ, Madrid JF, Aparicio R, Leis O, Oporto B (1999) Lectin histochemical localization of N- and O-linked oligosaccharides during the spermiogenesis of the urodele amphibian Pleurodeles waltl. Glycoconj J 16:639–648

    Article  PubMed  Google Scholar 

  • Sáez FJ, Madrid JF, Alonso E, Hernández F (2000a) Lectin histochemical identification of the carbohydrate moieties on N- and O-linked oligosaccharides in the duct cells of the testis of an amphibian urodele, the Spanish newt (Pleurodeles waltl). Histochem J 32:717–724

    Article  PubMed  Google Scholar 

  • Sáez FJ, Madrid JF, Aparicio R, Alonso E, Hernández F (2000b) Glycan residues of N- and O-linked oligosaccharides in the premeiotic spermatogenetic cells of the urodele amphibian Pleurodeles waltl characterized by means of lectin histochemistry. Tissue Cell 32:302–311

    Article  PubMed  Google Scholar 

  • Sáez FJ, Madrid JF, Aparicio R, Hernández F, Alonso E (2001a) Carbohydrate moieties of the interstitial and glandular tissues of the amphibian Pleurodeles waltl testis shown by lectin histochemistry. J Anat 198:47–56

    Article  PubMed  Google Scholar 

  • Sáez FJ, Madrid JF, Alonso E, Hernández F (2001b) Glycan composition of follicle (Sertoli) cells of the amphibian Pleurodeles waltl. A lectin histochemical study. J Anat 198:673–681

    Article  PubMed  Google Scholar 

  • Sáez FJ, Madrid JF, Cardoso S, Gómez L, Hernández F (2004) Glycoconjugates of the urodele amphibian testis shown by lectin cytochemical methods. Microsc Res Tech 64:63–76

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff R, Geyer R, Jennemann R, Paret C, Kiss E, Yamashita T, Gorgas K, Sijmonsma TP, Iwamori M, Finaz C, Proia RL, Wiegandt H, Grone HJ (2005) Novel class of glycosphingolipids involved in male fertility. J Biol Chem 280:27310–27318

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer DO (1997) Anesthesia and analgesia in non-traditional laboratory animal species. In: Kohn DF, Wixson SK, White WJ, Benson GJ (eds) Anesthesia and analgesia in laboratory animals. Academic Press, New York, pp 359–362

    Google Scholar 

  • Shur BD (2008) Reassessing the role of protein-carbohydrate complementarity during sperm-egg interactions in the mouse. Int J Dev Biol 52:703–715

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA (1992) Diversity of cell glycoconjugates shown histochemically: a perspective. J Histochem Cytochem 40:1–38

    PubMed  CAS  Google Scholar 

  • Stanley P, Cummings RD (2009) Structures common to different glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 175–198

    Google Scholar 

  • Sugii S, Kabat EA, Baer HH (1982) Further immunochemical studies on the combining sites of Lotus tetragonolobus and Ulex europaeus I and II lectins. Carbohydr Res 99:99–101

    Article  CAS  Google Scholar 

  • Takamiya K, Yamamoto A, Furukawa K, Zhao J, Fukumoto S, Yamashiro S, Okada M, Haraguchi M, Shin M, Kishikawa M, Shiku H, Aizawa S, Furukawa K (1998) Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone. Proc Natl Acad Sci USA 95:12147–12152

    Article  PubMed  CAS  Google Scholar 

  • Tang XM, Lalli MF, Clermont Y (1982) A cytochemical study of the Golgi apparatus of the spermatid during spermiogenesis in the rat. Am J Anat 163:283–294

    Article  PubMed  CAS  Google Scholar 

  • Tanghe S, Van SA, Duchateau L, Nauwynck H, de Kruif A (2004) Carbohydrates and glycoproteins involved in bovine fertilization in vitro. Mol Reprod Dev 68:492–499

    Article  PubMed  CAS  Google Scholar 

  • Valbuena G, Hernández F, Madrid JF, Sáez FJ (2008) Acrosome biosynthesis in spermatocytes and spermatids revealed by HPA lectin cytochemistry. Anat Rec 291:1097–1105

    Article  Google Scholar 

  • Varki A, Freeze HH (2009) Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 601–615

    Google Scholar 

  • Varki A, Etzler ME, Cummings RD, Esko JD (2009a) Discovery and classification of glycan-binding proteins. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 375–386

    Google Scholar 

  • Varki A, Freeze HH, Vacquier VD (2009b) Glycans in development and systemic physiology. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 531–536

    Google Scholar 

  • Wassarman PM, Litscher ES (2008) Mammalian fertilization: the egg’s multifunctional zona pellucida. Int J Dev Biol 52:665–676

    Article  PubMed  CAS  Google Scholar 

  • Wollina U, Schreiber G, Zollmann C, Hipler C, Gunther E (1989) Lectin-binding sites in normal human testis. Andrologia 21:127–130

    Article  PubMed  CAS  Google Scholar 

  • Wu AM (2001) Expression of binding properties of Gal/GalNAc reactive lectins by mammalian glycotopes. Adv Exp Med Biol 491:55–64

    PubMed  CAS  Google Scholar 

  • Wu AM, Sugii SJ (1988) Differential binding properties of Ga1NAc and/or Ga1 specific lectins. Adv Exp Med Biol 228:205–263

    PubMed  CAS  Google Scholar 

  • Wu AM, Wu JH, Herp A, Liu JH (2003) Effect of polyvalencies of glycotopes on the binding of a lectin from the edible mushroom, Agaricus bisporus. Biochem J 371:311–320

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Wu JH, Singh T, Liu JH, Herp A (2004) Lectinochemical studies on the affinity of Anguilla anguilla agglutinin for mammalian glycotopes. Life Sci 75:1085–1103

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Kochibe N, Ohkura T, Ueda I, Kobata A (1985) Fractionation of l-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J Biol Chem 260:4688–4693

    PubMed  CAS  Google Scholar 

  • Yan L, Wilkins PP, Alvarez-Manilla G, Do SI, Smith DF, Cummings RD (1997) Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Le(x) determinant. Glycoconj J 14:45–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the UPV/EHU (1/UPV00075.310-E-14847/2002 and 1/UPV00077.310-E-15927/2004) and Fundación Séneca (Comunidad Autónoma de la Región de Murcia, grant number 04542/GERM/06). G.V. was a fellowship from the UPV/EHU. Mrs M. Portuondo and Mrs. C. Otamendi contributed to sample preparation. We thank Mrs M.J. Aldasoro for her support in the office work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco José Sáez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valbuena, G., Madrid, J.F., Hernández, F. et al. Identification of fucosylated glycoconjugates in Xenopus laevis testis by lectin histochemistry. Histochem Cell Biol 134, 215–225 (2010). https://doi.org/10.1007/s00418-010-0722-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0722-x

Keywords

Navigation