Skip to main content
Log in

Nedd1 expression as a marker of dynamic centrosomal localization during mouse embryonic development

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

As the primary microtubule-organizing centre of the mammalian cell, the centrosome plays many important roles during cell growth and organization. This is evident across a broad range of cell types and processes, such as the proliferation, differentiation and polarity of neural cells. Additionally, given its localization and function, there are likely to be many more processes that rely on the centrosome that have not yet been characterized. Currently, little is known about centrosomal dynamics during mammalian development. In this study, we have analyzed Nedd1 protein expression to characterize the localization of the centrosome during some aspects of mouse embryogenesis. Using a Nedd1 antibody we have demonstrated the colocalization of Nedd1 with centrosomal markers. We found strong expression of Nedd1, and therefore the centrosome, in highly proliferating cells during neural development. Additionally, Nedd1 was found to have high expression in the cytoplasm of a subset of cells in the dorsal root ganglia. We have also shown a distinct, polarized centrosomal localization of Nedd1 in the developing lens, retina and other polarized tissues. This study reveals the localization of Nedd1 and the centrosome during important processes in mouse embryogenesis and provides a basis for further study into its role in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aaku-Saraste E, Hellwig A, Huttner WB (1996) Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure-remodeling of the neuroepithelium prior to neurogenesis. Dev Biol 180:664–679

    Article  PubMed  CAS  Google Scholar 

  • Akitaya T, Bronner-Fraser M (1992) Expression of cell adhesion molecules during initiation and cessation of neural crest cell migration. Dev Dyn 194:12–20

    PubMed  CAS  Google Scholar 

  • Bellion A, Baudoin JP, Alvarez C, Bornens M, Metin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25:5691–5699

    Article  PubMed  CAS  Google Scholar 

  • Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T (2006) Expression of Prox1 during mouse cochlear development. J Comp Neurol 496:172–186

    Article  PubMed  CAS  Google Scholar 

  • Besharse JC, Horst CJ (1990) The photoreceptor connecting cilium. A model for the transition zone. Plenum Press, New York

    Google Scholar 

  • Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Edde B, Bornens M (1998) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143:1575–1589

    Article  PubMed  CAS  Google Scholar 

  • Brazel CY, Romanko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69:49–69

    Article  PubMed  Google Scholar 

  • Chang B, Khanna H, Hawes N, Jimeno D, He S, Lillo C, Parapuram SK, Cheng H, Scott A, Hurd RE, others (2006) In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet 15:1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Chenn A, Zhang YA, Chang BT, McConnell SK (1998) Intrinsic polarity of mammalian neuroepithelial cells. Mol Cell Neurosci 11:183–193

    Article  PubMed  CAS  Google Scholar 

  • Chow RL, Lang RA (2001) Early eye development in vertebrates. Annu Rev Cell Dev Biol 17:255–296

    Article  PubMed  CAS  Google Scholar 

  • Dahm R, Procter JE, Ireland ME, Lo WK, Mogensen MM, Quinlan RA, Prescott AR (2007) Reorganization of centrosomal marker proteins coincides with epithelial cell differentiation in the vertebrate lens. Exp Eye Res 85:696–713

    Article  PubMed  CAS  Google Scholar 

  • de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centrosome localization determines neuronal polarity. Nature 436:704–708

    Article  PubMed  Google Scholar 

  • Donovan SL, Dyer MA (2005) Regulation of proliferation during central nervous system development. Semin Cell Dev Biol 16:407–421

    Article  PubMed  CAS  Google Scholar 

  • Doxsey S, McCollum D, Theurkauf W (2005) Centrosomes in cellular regulation. Annu Rev Cell Dev Biol

  • Foster FS, Zhang M, Duckett AS, Cucevic V, Pavlin CJ (2003) In vivo imaging of embryonic development in the mouse eye by ultrasound biomicroscopy. Invest Ophthalmol Vis Sci 44:2361–2366

    Article  PubMed  Google Scholar 

  • Fuller SD, Gowen BE, Reinsch S, Sawyer A, Buendia B, Wepf R, Karsenti E (1995) The core of the mammalian centriole contains gamma-tubulin. Curr Biol 5:1384–1393

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2000) The central nervous system and the epidermis. In: Developmental biology, 6th edn. Sinauer Associates Inc., Sunderland, pp 379–445

    Google Scholar 

  • Gregory WA, Edmondson JC, Hatten ME, Mason CA (1988) Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro. J Neurosci 8:1728–1738

    PubMed  CAS  Google Scholar 

  • Haren L, Remy MH, Bazin I, Callebaut I, Wright M, Merdes A (2006) NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J Cell Biol 172:505–515

    Article  PubMed  CAS  Google Scholar 

  • Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30:276–283

    Article  PubMed  CAS  Google Scholar 

  • Kasemeier-Kulesa JC, Kulesa PM, Lefcort F (2005) Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development 132:235–245

    Article  PubMed  CAS  Google Scholar 

  • Kaufman M (1992) The atlas of mouse development, revised edn. Academic Press, London

    Google Scholar 

  • Keating TJ, Peloquin JG, Rodionov VI, Momcilovic D, Borisy GG (1997) Microtubule release from the centrosome. Proc Natl Acad Sci USA 94:5078–5083

    Article  PubMed  CAS  Google Scholar 

  • Kellogg DR, Moritz M, Alberts BM (1994) The centrosome and cellular organization. Annu Rev Biochem 63:639–674

    Article  PubMed  CAS  Google Scholar 

  • Koblar SA, Krull CE, Pasquale EB, McLennan R, Peale FD, Cerretti DP, Bothwell M (2000) Spinal motor axons and neural crest cells use different molecular guides for segmental migration through the rostral half-somite. J Neurobiol 42:437–447

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tomooka Y, Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Matsuzaki T, Yoshida Y, Noda M (1994) Molecular cloning and biological activity of a novel developmentally regulated gene encoding a protein with beta-transducin-like structure. J Biol Chem 269:11318–11326

    PubMed  CAS  Google Scholar 

  • Ligon LA, Karki S, Tokito M, Holzbaur EL (2001) Dynein binds to beta-catenin and may tether microtubules at adherens junctions. Nat Cell Biol 3:913–917

    Article  PubMed  CAS  Google Scholar 

  • Luders J, Patel UK, Stearns T (2006) GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 8:137–147

    Article  PubMed  Google Scholar 

  • Malicki J, Driever W (1999) oko meduzy mutations affect neuronal patterning in the zebrafish retina and reveal cell–cell interactions of the retinal neuroepithelial sheet. Development 126:1235–1246

    PubMed  CAS  Google Scholar 

  • Manning J, Kumar S (2007) NEDD1: function in microtubule nucleation, spindle assembly and beyond. Int J Biochem Cell Biol 39:7–11

    Article  PubMed  CAS  Google Scholar 

  • McKenzie E, Krupin A, Kelley MW (2004) Cellular growth and rearrangement during the development of the mammalian organ of Corti. Dev Dyn 229:802–812

    Article  PubMed  CAS  Google Scholar 

  • Meads T, Schroer TA (1995) Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil Cytoskeleton 32:273–288

    Article  PubMed  CAS  Google Scholar 

  • Muresan V, Joshi HC, Besharse JC (1993) Gamma-tubulin in differentiated cell types: localization in the vicinity of basal bodies in retinal photoreceptors and ciliated epithelia. J Cell Sci 104(Pt 4):1229–1237

    PubMed  CAS  Google Scholar 

  • Musch A (2004) Microtubule organization and function in epithelial cells. Traffic 5:1–9

    Article  PubMed  Google Scholar 

  • Nakagawa S, Takeichi M (1998) Neural crest emigration from the neural tube depends on regulated cadherin expression. Development 125:2963–2971

    PubMed  CAS  Google Scholar 

  • Pan J, Snell W (2007) The primary cilium: keeper of the key to cell division. Cell 129:1255–1257

    Article  PubMed  CAS  Google Scholar 

  • Paoletti A, Moudjou M, Paintrand M, Salisbury JL, Bornens M (1996) Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci 109(Pt 13):3089–3102

    PubMed  CAS  Google Scholar 

  • Pei YF, Rhodin JA (1970) The prenatal development of the mouse eye. Anat Rec 168:105–125

    Article  PubMed  CAS  Google Scholar 

  • Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104:289–302

    Article  PubMed  CAS  Google Scholar 

  • Rizzolo LJ, Joshi HC (1993) Apical orientation of the microtubule organizing center and associated gamma-tubulin during the polarization of the retinal pigment epithelium in vivo. Dev Biol 157:147–156

    Article  PubMed  CAS  Google Scholar 

  • Salas PJ, Rodriguez ML, Viciana AL, Vega-Salas DE, Hauri HP (1997) The apical submembrane cytoskeleton participates in the organization of the apical pole in epithelial cells. J Cell Biol 137:359–375

    Article  PubMed  CAS  Google Scholar 

  • Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169:361–376

    Article  PubMed  CAS  Google Scholar 

  • Sloboda RD, Rosenbaum JL (2007) Making sense of cilia and flagella. J Cell Biol 179:575–582

    Article  PubMed  CAS  Google Scholar 

  • Sluder G (2005) Two-way traffic: centrosomes and the cell cycle. Nat Rev Mol Cell Biol 6:743–748

    Article  PubMed  CAS  Google Scholar 

  • Srsen V, Merdes A (2006) The centrosome and cell proliferation. Cell Div 1:26

    Article  PubMed  Google Scholar 

  • Trainor PA (2005) Specification of neural crest cell formation and migration in mouse embryos. Semin Cell Dev Biol 16:683–693

    Article  PubMed  CAS  Google Scholar 

  • Tucker JB, Paton CC, Richardson GP, Mogensen MM, Russell IJ (1992) A cell surface-associated centrosomal layer of microtubule-organizing material in the inner pillar cell of the mouse cochlea. J Cell Sci 102(Pt 2):215–226

    PubMed  Google Scholar 

  • Yuba-Kubo A, Kubo A, Hata M, Tsukita S (2005) Gene knockout analysis of two gamma-tubulin isoforms in mice. Dev Biol 282:361–373

    Article  PubMed  CAS  Google Scholar 

  • Zolessi FR, Poggi L, Wilkinson CJ, Chien CB, Harris WA (2006) Polarization and orientation of retinal ganglion cells in vivo. Neural Develop 1:2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the IMVS and the Cancer Council of South Australia. JM is supported by an Australian Postgraduate Award. SK is a Senior Principal Research Fellow of the National Health and Medical Research Council. We thank Professor J. L. Salisbury for gift of the centrin antibody Dr. B. Edde for the gift of the GT335 antibody, and Dr. Natasha Harvey for technical advice and providing several of the mouse sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manning, J.A., Colussi, P.A., Koblar, S.A. et al. Nedd1 expression as a marker of dynamic centrosomal localization during mouse embryonic development. Histochem Cell Biol 129, 751–764 (2008). https://doi.org/10.1007/s00418-008-0392-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0392-0

Keywords

Navigation