Skip to main content
Log in

Mobility of multi-subunit complexes in the nucleus: accessibility and dynamics of chromatin subcompartments

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The cell nucleus contains a number of mobile subnuclear organelles involved in RNA processing, transcriptional regulation and antiviral defence like Cajal and promyelocytic leukaemia (PML) bodies. It remains an open question how these bodies translocate to specific nuclear regions within the nucleus to exert their biological function. The mobility and localisation of macromolecules in the nucleus are closely related to the dynamic organisation and accessibility of chromatin. This relation has been studied with biologically inert fluorescent particles like dextrans, polystyrene nanospheres and inactive protein crystals formed by the Mx1-YFP fusion protein or other ectopically expressed proteins like vimentin. As reviewed here, properties of the chromatin environment can be identified from these experiments that determine the mobility of Cajal and PML bodies and other supramolecular complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

D:

Diffusion coefficient

FISH:

Fluorescence in situ hybridisation

ICD:

Interchromosomal domain

MSD:

Mean square displacement

NLS:

Nuclear localisation sequence

PML:

Promyelocytic leukaemia

SPT:

Single particle tracking

References

  • Abney JR, Cutler B, Fillbach ML, Axelrod D, Scalettar BA (1997) Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol 137:1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adkins NL, Watts M, Georgel PT (2004) To the 30-nm chromatin fiber and beyond. Biochim Biophys Acta 1677:12–23

    Article  CAS  PubMed  Google Scholar 

  • Bacher CP, Reichenzeller M, Athale C, Herrmann H, Eils R (2004) 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin—poor tracks. BMC Cell Biol 5:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  CAS  PubMed  Google Scholar 

  • Bastiaens PI, Pepperkok R (2000) Observing proteins in their natural habitat: the living cell. Trends Biochem Sci 25:631–637

    Article  CAS  PubMed  Google Scholar 

  • Belmont AS, Bruce K (1994) Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J Cell Biol 127:287–302

    Article  CAS  PubMed  Google Scholar 

  • Berezney R, Dubey DD, Huberman JA (2000) Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108:471–484

    Article  CAS  PubMed  Google Scholar 

  • Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J 77:2871–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  CAS  PubMed  Google Scholar 

  • Braga J, Desterro JM, Carmo-Fonseca M (2004) Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell 15:4749–4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridger JM, Herrmann H, Münkel C, Lichter P (1998) Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 111(Pt 9):1241–1253

    Article  CAS  PubMed  Google Scholar 

  • Bridger JM, Kalla C, Wodrich H, Weitz S, King JA, Khazaie K, Kräusslich H-G, Lichter P (2005) Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 302:180–193

    Article  CAS  PubMed  Google Scholar 

  • Callan HG, Gall JG, Murphy C (1991) Histone genes are located at the sphere loci of Xenopus lampbrush chromosomes. Chromosoma 101:245–251

    Article  CAS  PubMed  Google Scholar 

  • Chadwick BP, Willard HF (2003) Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Semin Cell Dev Biol 14:359–367

    Article  CAS  PubMed  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  CAS  PubMed  Google Scholar 

  • Corona DF, Tamkun JW (2004) Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim Biophys Acta 1677:113–119

    Article  CAS  PubMed  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C, (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Kupper K, Dietzel S, Fakan S (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell 96:555–567

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792

    Article  CAS  PubMed  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies HG (1967) Fine structure of heterochromatin in certain cell nuclei. Nature 214:208–210

    Article  CAS  PubMed  Google Scholar 

  • Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R, Cremer C, Cremer T (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252(2):363–375

    Article  CAS  PubMed  Google Scholar 

  • Dietzel S, Zolghadr K, Hepperger C, Belmont AS (2004) Differential large-scale chromatin compaction and intranuclear positioning of transcribed versus non-transcribed transgene arrays containing beta-globin regulatory sequences. J Cell Sci 117:4603–4614

    Article  CAS  PubMed  Google Scholar 

  • Dillon N (2004) Heterochromatin structure and function. Biol Cell 96:631–637

    Article  CAS  PubMed  Google Scholar 

  • Dillon N, Festenstein R (2002) Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 18:252–258

    Article  CAS  PubMed  Google Scholar 

  • Durchschlag H (1986) Specific volumes of biological macromolecules and some other molecules of biological interest. In: Hinz H-J (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Berlin Heidelberg New York, pp 45–128

    Chapter  Google Scholar 

  • Fejes Tóth K, Knoch TA, Wachsmuth M, Frank-Stöhr M, Stöhr M, Bacher CP, Müller G, Rippe K (2004) Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin. J Cell Sci 117:4277–4287

    Article  CAS  Google Scholar 

  • Frey MR, Matera AG (1995) Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc Natl Acad Sci USA 92:5915–5919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall JG (2003) The centennial of the Cajal body. Nat Rev Mol Cell Biol 4:975–980

    Article  CAS  PubMed  Google Scholar 

  • Gall JG, Stephenson EC, Erba HP, Diaz MO, Barsacchi-Pilone G (1981) Histone genes are located at the sphere loci of newt lampbrush chromosomes. Chromosoma 84:159–171

    Article  CAS  PubMed  Google Scholar 

  • Görisch SM, Richter K, Scheuermann MO, Herrmann H, Lichter P (2003) Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules. Exp Cell Res 289:282–294

    Article  PubMed  CAS  Google Scholar 

  • Görisch SM, Wachsmuth M, Ittrich C, Bacher CP, Rippe K, Lichter P (2004) Nuclear body movement is determined by chromatin accessibility and dynamics. Proc Natl Acad Sci USA 101:13221–13226

    Article  PubMed  PubMed Central  Google Scholar 

  • Grewal SI, Rice JC (2004) Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol 16:230–238

    Article  CAS  PubMed  Google Scholar 

  • Hall LL, Lawrence JB (2003) The cell biology of a novel chromosomal RNA: chromosome painting by XIST/Xist RNA initiates a remodeling cascade. Semin Cell Dev Biol 14:369–378

    Article  CAS  PubMed  Google Scholar 

  • Hamkalo BA, Rattner JB (1980) Folding up genes and chromosomes. Q Rev Biol 55:409–417

    Article  CAS  PubMed  Google Scholar 

  • Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Ann Rev Biophys Biomol Struct 31:361–392

    Article  CAS  Google Scholar 

  • Heitz R (1928) Das Heterochromatin der Moose. Jahrb Wiss Botanik 69:762818

    Google Scholar 

  • Herrmann H, Lichter P (1999) New ways to look at the interchromosomal-domain compartment. Protoplasma 209:157–165

    Article  Google Scholar 

  • Heun P, Laroche T, Shimada K, Furrer P, Gasser SM (2001) Chromosome dynamics in the yeast interphase nucleus. Science 294:2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Jacobs EY, Frey MR, Wu W, Ingledue TC, Gebuhr TC, Gao L, Marzluff WF, Matera AG (1999) Coiled bodies preferentially associate with U4, U11, and U12 small nuclear RNA genes in interphase HeLa cells but not with U6 and U7 genes. Mol Biol Cell 10:1653–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura H, Sugaya K, Cook PR (2002) The transcription cycle of RNA polymerase II in living cells. J Cell Biol 159:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreth G, Finsterle J, von Hase J, Cremer M, Cremer C (2004) Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys J 86:2803–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  CAS  PubMed  Google Scholar 

  • Lamond AI, Sleeman JE (2003) Nuclear substructure and dynamics. Curr Biol 13:R825–R828

    Article  CAS  PubMed  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  CAS  PubMed  Google Scholar 

  • Lampel S, Bridger JM, Zirbel RM, Mathieu UR, Lichter P (1997) Nuclear RNA accumulations contain released transcripts and exhibit specific distributions with respect to Sm antigen foci. DNA Cell Biol 16:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57(3):493–502

    Article  CAS  PubMed  Google Scholar 

  • Lénárt P, Rabut G, Daigle N, Hand AR, Terasaki M, Ellenberg J (2003) Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes. J Cell Biol 160:1055–1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    Article  CAS  PubMed  Google Scholar 

  • Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629

    Article  CAS  PubMed  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5:296–304

    Article  CAS  PubMed  Google Scholar 

  • Manders EM, Kimura H, Cook PR (1999) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 144:813–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7:930–939

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  CAS  PubMed  Google Scholar 

  • Molenaar C, Wiesmeijer K, Verwoerd NP, Khazen S, Eils R, Tanke HJ, Dirks RW (2003) Visualizing telomere dynamics in living mammalian cells using PNA probes. Embo J 22:6631–6641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller WG, Rieder D, Kreth G, Cremer C, Trajanoski Z, McNally JG (2004) Generic features of tertiary chromatin structure as detected in natural chromosomes. Mol Cell Biol 24:9359–9370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Münkel C, Eils R, Dietzel S, Zink D, Mehring C, Wedemann G, Cremer T, Langowski J (1999) Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol 285:1053–1065

    Article  PubMed  Google Scholar 

  • Muratani M, Gerlich D, Janicki SM, Gebhard M, Eils R, Spector DL (2002) Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nat Cell Biol 4:106–110

    Article  CAS  PubMed  Google Scholar 

  • Paul AL, Ferl RJ (1999) Higher-order chromatin structure: looping long molecules. Plant Mol Biol 41:713–720

    Article  CAS  PubMed  Google Scholar 

  • Pienta KJ, Coffey DS (1984) A structural analysis of the role of the nuclear matrix and DNA loops in the organization of the nucleus and chromosome. J Cell Sci Suppl 1:123–135

    Article  CAS  PubMed  Google Scholar 

  • Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85:9138–9142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platani M, Goldberg I, Lamond AI, Swedlow JR (2002) Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol 4:502–508

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60(4):910–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenzeller M, Burzlaff A, Lichter P, Herrmann H (2000) In vivo observation of a nuclear channel-like system: evidence for a distinct interchromosomal domain compartment in interphase cells. J Struct Biol 129:175–185

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Reichenzeller M, Görisch SM, Schmidt U, Scheuermann MO, Herrmann H, Lichter P (2005) Characterization of a nuclear compartment shared by nuclear bodies applying ectopic protein expression and correlative light and electron microscopy. Exp Cell Res 303:128–137

    CAS  PubMed  Google Scholar 

  • Rieger B, Molenaar C, Dirks RW, Van Vliet LJ (2004) Alignment of the cell nucleus from labeled proteins only for 4D in vivo imaging. Microsc Res Tech 64(2):142–150

    Article  CAS  Google Scholar 

  • Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700

    Article  CAS  PubMed  Google Scholar 

  • Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE (1995) A random-walk/giant-loop model for interphase chromosomes. Proc Nat Acad Sci USA 92:2710–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sako Y, Kusumi A (1994) Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol 125:1251–1264

    Article  CAS  PubMed  Google Scholar 

  • Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66:394–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuermann MO, Tajbakhsh J, Kurz A, Saracoglu K, Eils R, Lichter P (2004) Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 301:266–279

    Article  CAS  PubMed  Google Scholar 

  • Schul W, van Driel R, de Jong L (1998) Coiled bodies and U2 snRNA genes adjacent to coiled bodies are enriched in factors required for snRNA transcription. Mol Biol Cell 9:1025–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedat J, Manuelidis L (1978) A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol 42 Pt 1:331–350

    Article  CAS  PubMed  Google Scholar 

  • Seksek O, Biwersi J, and Verkman AS (1997) Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiels C, Islam SA, Vatcheva R, Sasieni P, Sternberg MJ, Freemont PS, Sheer D (2001) PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J Cell Sci 114:3705–3716

    Article  CAS  PubMed  Google Scholar 

  • Simson R, Yang B, Moore SE, Doherty P, Walsh FS, Jacobson KA (1998) Structural mosaicism on the submicron scale in the plasma membrane. Biophys J 74:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector DL (2001) Nuclear domains. J Cell Sci 114:2891–2893

    Article  CAS  PubMed  Google Scholar 

  • Spector DL (2003) The dynamics of chromosome organization and gene regulation. Annu Rev Biochem 72:573–608

    Article  CAS  PubMed  Google Scholar 

  • Straight AF, Belmont AS, Robinett CC, Murray AW (1996) GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599–1608

    Article  CAS  PubMed  Google Scholar 

  • Tanabe H, Muller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99:4424–4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng Y, Lee JS, Kole TP, Jiang I, Wirtz D (2004) Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci 117:2159–2167

    Article  CAS  PubMed  Google Scholar 

  • Tumbar T, Sudlow G, Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145:1341–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez J, Belmont AS, Sedat JW (2001) Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 11:1227–1239

    Article  CAS  PubMed  Google Scholar 

  • Verschure PJ, van der Kraan I, Manders EM, Hoogstraten D, Houtsmuller AB, van Driel R (2003) Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep 4:861–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser AE, Jaunin F, Fakan S, Aten JA (2000) High resolution analysis of interphase chromosome domains. J Cell Sci 113(Pt 14):2585–2593

    Article  CAS  PubMed  Google Scholar 

  • Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576

    Article  CAS  PubMed  Google Scholar 

  • Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298:677–689

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, Sheer D (2004) Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164:515–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidemann T, Wachsmuth M, Knoch TA, Müller G, Waldeck W, Langowski J (2003) Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J Mol Biol 334:229–240

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Develop 11:130–135

    Article  CAS  Google Scholar 

  • Xing Y, Johnson CV, Dobner PR, Lawrence JB (1993) Higher level organization of individual gene transcription and RNA splicing. Science 259:1326–1330

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Bornfleth H, Visser A, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247(1):176–188

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102:241–251

    Article  CAS  PubMed  Google Scholar 

  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1:93–106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Stephanie Geiger for providing the image in Fig. 1a, Thibaud Jegou for helping with Fig. 7 and Katalin Fejes Tóth, Markus Scheuermann, Alessandro Brero, and Malte Wachsmuth for a critical reading of the manuscript as well as Harald Herrmann, Anje Sporbert, Karsten Richter and Ute Schmidt for fruitful discussions. Our work is supported by the Deutsche Forschungsgemeinschaft (grants Li 406/5-3, Ri 828/5-1) and the Volkswagen Foundation in the program Junior Research Groups at German Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine M. Görisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Görisch, S.M., Lichter, P. & Rippe, K. Mobility of multi-subunit complexes in the nucleus: accessibility and dynamics of chromatin subcompartments. Histochem Cell Biol 123, 217–228 (2005). https://doi.org/10.1007/s00418-005-0752-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0752-y

Keywords

Navigation