Skip to main content
Log in

Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14 % of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8 % of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson’s disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may be worthwhile to understand such a symptom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson G, Noorian AR, Taylor G, Anitha M, Bernhard D, Srinivasan S, Greene JG (2007) Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 207:4–12. doi:10.1016/j.expneurol.2007.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anlauf M, Schäfer MK, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111. doi:10.1002/cne.10599

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DM, Ross CA, Pickel VM, Joh TH, Reis DJ (1982) Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J Comp Neurol 212:173–187. doi:10.1002/cne.902120207

    Article  CAS  PubMed  Google Scholar 

  • Baetge G, Gershon MD (1989) Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 132:189–211

    Article  CAS  PubMed  Google Scholar 

  • Baleriola J, Jean Y, Troy C, Hengst U (2015) Detection of axonally localized mRNAs in brain sections using high-resolution in situ hybridization. J Vis Exp 100:e52799. doi:10.3791/52799

    PubMed  Google Scholar 

  • Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546–562. doi:10.1002/cne.902620408

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Balestra B, Levandis G, Cervio M, Greco R, Tassorelli C, Colucci M, Faniglione M, Bazzini E, Nappi G, Clavenzani P, Vigneri S, De Giorgio R, Tonini M (2009) Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson’s disease. Neurosci Lett 467:203–207. doi:10.1016/j.neulet.2009.10.035

    Article  CAS  PubMed  Google Scholar 

  • Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72. doi:10.1016/j.neulet.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  • Breuer C, Neuhuber WL, Wörl J (2004) Development of neuromuscular junctions in the mouse esophagus: morphology suggests a role for enteric coinnervation during maturation of vagal myoneural contacts. J Comp Neurol 475:47–69. doi:10.1002/cne.20156

    Article  PubMed  Google Scholar 

  • Byrum CE, Guyenet PG (1987) Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J Comp Neurol 261:529–542. doi:10.1002/cne.902610406

    Article  CAS  PubMed  Google Scholar 

  • Cersosimo MG, Benarroch EE (2012) Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 46:559–564. doi:10.1016/j.nbd.2011.10.014

    Article  PubMed  Google Scholar 

  • Cochard P, Goldstein M, Black IB (1978) Ontogenetic appearance and disappearance of tyrosine hydroxylase and catecholamines in the rat embryo. Proc Natl Acad Sci USA 75:2986–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colucci M, Cervio M, Faniglione M, De Angelis S, Pajoro M, Levandis G, Tassorelli C, Blandini F, Feletti F, De Giorgio R, Dellabianca A, Tonini S, Tonini M (2012) Intestinal dysmotility and enteric neurochemical changes in a Parkinson’s disease rat model. Auton Neurosci 169:77–86. doi:10.1016/j.autneu.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Furness JB, Gabella G (1971) Catecholamine containing nerve cells in the mammalian myenteric plexus. Histochemie 25:103–106

    CAS  PubMed  Google Scholar 

  • Del Tredici K, Braak H (2012) Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord 27:597–607. doi:10.1002/mds.24921

    Article  PubMed  Google Scholar 

  • Derrey S, Chastan N, Maltete D, Verin E, Dechelotte P, Lefaucheur R, Proust F, Freger P, Leroi AM, Weber J, Gourcerol G (2015) Impact of deep brain stimulation on pharyngo-esophageal motility: a randomized cross-over study. Neurogastroenterol Motil 27:1214–1222. doi:10.1111/nmo.12607

    Article  CAS  PubMed  Google Scholar 

  • Fantaguzzi CM, Thacker M, Chiocchetti R, Furness JB (2009) Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell Tissue Res 336:179–189. doi:10.1007/s00441-009-0773-2

    Article  Google Scholar 

  • Flatmark T (2000) Catecholamine biosynthesis and physiological regulation in neuroendocrine cells. Acta Physiol Scand 168:1–17

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Grzanna R (1990) Distribution of locus coeruleus axons within the rat brain-stem demonstrated by Phaseolus vulgaris leukoagglutinin anterograde tracing in combination with dopamine-beta-hydroxylase immunofluorescence. J Comp Neurol 293:616–631. doi:10.1002/cne.902930407

    Article  CAS  PubMed  Google Scholar 

  • Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Costa M (1971) Morphology and distribution of intrinsic adrenergic neurones in the proximal colon of the guinea-pig. Z Zellforsch Mikrosk Anat 120:346–363

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Costa M, Freeman CG (1979) Absence of tyrosine hydroxylase activity and dopamine beta-hydroxylase immunoreactivity in intrinsic nerves of the guinea-pig ileum. Neuroscience 4:305–310

    Article  CAS  PubMed  Google Scholar 

  • Gerbasi V, Lutsenko S, Lewis EJ (2003) A mutation in the ATP7B copper transporter causes reduced dopamine beta-hydroxylase and norepinephrine in mouse adrenal. Neurochem Res 28:867–873

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD, Chalazonitis A, Rothman TP (1993) From neural crest to bowel: development of the enteric nervous system. J Neurobiol 24:199–214. doi:10.1002/neu.480240207

    Article  CAS  PubMed  Google Scholar 

  • Greene JG, Noorian AR, Srinivasan S (2009) Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 218:154–161. doi:10.1016/j.expneurol.2009.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber H, Zenker W (1978) Acetylcholinesterase activity in motor nerve fibres in correlation to muscle fibre types in rat. Brain Res 141:325–334

    Article  CAS  PubMed  Google Scholar 

  • Gumy LF, Katrukha EA, Kapitein LC, Hoogenraad CC (2014) New insights into mRNA trafficking in axons. Dev Neurobiol 74:233–244. doi:10.1002/dneu.22121

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33:599–614. doi:10.1111/j.1365-2990.2007.00874.x

    Article  CAS  PubMed  Google Scholar 

  • Hempfling C, Neuhuber WL, Wörl J (2012) Serotonin-immunoreactive neurons and mast cells in the mouse esophagus suggest involvement of serotonin in both motility control and neuroimmune interactions. Neurogastroenterol Motil 24:e67–e78. doi:10.1111/j.1365-2982.2011.01797.x

    Article  CAS  PubMed  Google Scholar 

  • Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, Wang ZY, Roybon L, Melki R, Li JY (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128:805–820. doi:10.1007/s00401-014-1343-6

    Article  PubMed  Google Scholar 

  • Jost WH (2010) Gastrointestinal dysfunction in Parkinson’s disease. J Neurol Sci 289:69–73. doi:10.1016/j.jns.2009.08.020

    Article  CAS  PubMed  Google Scholar 

  • Kalf JG, de Swart BJ, Bloem BR, Munneke M (2012) Prevalence of oropharyngeal dysphagia in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord 18:311–315. doi:10.1016/j.parkreldis.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  • Kalia M, Fuxe K, Goldstein M (1985) Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. J Comp Neurol 233:308–332. doi:10.1002/cne.902330303

    Article  CAS  PubMed  Google Scholar 

  • Kallmünzer B, Sörensen B, Neuhuber WL, Wörl J (2006) Heterogeneity of neuromuscular junctions in striated muscle of human esophagus demonstrated by triple staining for the vesicular acetylcholine transporter, alpha-bungarotoxin, and acetylcholinesterase. Cell Tissue Res 324:181–188. doi:10.1007/s00441-005-0154-4

    Article  PubMed  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    Article  CAS  PubMed  Google Scholar 

  • Khan MB, Lee BR, Kamitani T (2012) A simple and sensitive method for the demonstration of norepinephrine-storing adrenomedullary chromaffin cells. Histochem Cell Biol 138:155–165. doi:10.1007/s00418-012-0942-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhar MJ, Minneman K, Mull EC (2006) Catecholamines. In: Siegel GJ (ed) Basic neurochemistry, 7th edn. Academic Press/Elsevier, Amsterdam, pp 211–226

    Google Scholar 

  • Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, Derkinderen P (2009) The second brain and Parkinson’s disease. Eur J Neurosci 30:735–741. doi:10.1111/j.1460-9568.2009.06873.x

    Article  PubMed  Google Scholar 

  • Li ZS, Pham TD, Tamir H, Chen JJ, Gershon MD (2004) Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J Neurosci 24:1330–1339. doi:10.1523/JNEUROSCI.3982-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Caron MG, Blakely RD, Margolis KG, Gershon MD (2010) Dependence of serotonergic and other nonadrenergic enteric neurons on norepinephrine transporter expression. J Neurosci 30:16730–16740. doi:10.1523/JNEUROSCI.2276-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd RV, Sisson JC, Shapiro B, Verhofstad AA (1986) Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes, and chromogranin in neuroendocrine cells and tumors. Am J Pathol 125:45–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massari VJ, Dickerson LW, Gray AL, Lauenstein JM, Blinder KJ, Newsome JT, Rodak DJ, Fleming TJ, Gatti PJ, Gillis RA (1998) Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals. Brain Res 802:205–220

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    CAS  PubMed  Google Scholar 

  • Noorian AR, Taylor GM, Annerino DM, Greene JG (2011) Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol 519:3387–3401. doi:10.1002/cne.22679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ny L, Alm P, Ekstrom P, Hannibal J, Larsson B, Andersson KE (1994) Nitric oxide synthase-containing, peptide-containing, and acetylcholinesterase-positive nerves in the cat lower oesophagus. Histochem J 26:721–733

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer RF (2003) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2:107–116

    Article  PubMed  Google Scholar 

  • Pfeiffer RF (2011) Gastrointestinal dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 17:10–15. doi:10.1016/j.parkreldis.2010.08.003

    Article  PubMed  Google Scholar 

  • Phillips JK, Dubey R, Sesiashvilvi E, Takeda M, Christie DL, Lipski J (2001) Differential expression of the noradrenaline transporter in adrenergic chromaffin cells, ganglion cells and nerve fibres of the rat adrenal medulla. J Chem Neuroanat 21:95–104

    Article  CAS  PubMed  Google Scholar 

  • Phillips RJ, Walter GC, Wilder SL, Baronowsky EA, Powley TL (2008) Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson’s disease? Neuroscience 153:733–750. doi:10.1016/j.neuroscience.2008.02.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips RJ, Hudson CN, Powley TL (2013) Sympathetic axonopathies and hyperinnervation in the small intestine smooth muscle of aged Fischer 344 rats. Auton Neurosci 179:108–121. doi:10.1016/j.autneu.2013.09.002

    Article  PubMed  Google Scholar 

  • Qu ZD, Thacker M, Castelucci P, Bagyanszki M, Epstein ML, Furness JB (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334:147–161. doi:10.1007/s00441-008-0684-7

    Article  CAS  PubMed  Google Scholar 

  • Raab M, Neuhuber WL (2004) Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 122:445–459. doi:10.1007/s00418-004-0703-z

    Article  CAS  PubMed  Google Scholar 

  • Sang Q, Young HM (1998) The origin and development of the vagal and spinal innervation of the external muscle of the mouse esophagus. Brain Res 809:253–268

    Article  CAS  PubMed  Google Scholar 

  • Schemann M, Schaaf C, Mader M (1995) Neurochemical coding of enteric neurons in the guinea pig stomach. J Comp Neurol 353:161–178. doi:10.1002/cne.903530202

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Shimizu Y, Boudaka A, Wörl J, Neuhuber WL, Takewaki T (2007) Local neural regulation of the motility of the striated muscle portion in the mammalian esophagus. Curr Top Pharmacol 11:11–17

    CAS  Google Scholar 

  • Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668. doi:10.1073/pnas.0509567103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan LL, Bornstein JC, Anderson CR (2010) The neurochemistry and innervation patterns of extrinsic sensory and sympathetic nerves in the myenteric plexus of the C57Bl6 mouse jejunum. Neuroscience 166:564–579. doi:10.1016/j.neuroscience.2009.12.034

    Article  CAS  PubMed  Google Scholar 

  • Ter Horst GJ, Toes GJ, Van Willigen JD (1991) Locus coeruleus projections to the dorsal motor vagus nucleus in the rat. Neuroscience 45:153–160

    Article  PubMed  Google Scholar 

  • Toti L, Travagli RA (2014) Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 307:G1013–G1023. doi:10.1152/ajpgi.00258.2014

    Article  CAS  PubMed  Google Scholar 

  • Uddman R, Grunditz T, Luts A, Desai H, Fernstrom G, Sundler F (1995) Distribution and origin of the peripheral innervation of rat cervical esophagus. Dysphagia 10:203–212

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F (1988) Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 76:217–221

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Takahashi H, Ohama E, Ikuta F (1989) Tyrosine hydroxylase-immunoreactive intrinsic neurons in the Auerbach’s and Meissner’s plexuses of humans. Neurosci Lett 96:259–263

    Article  CAS  PubMed  Google Scholar 

  • Wattchow DA, Furness JB, Costa M (1988) Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterology 95:32–41

    CAS  PubMed  Google Scholar 

  • Wörl J, Neuhuber WL (2005) Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol 123:117–130. doi:10.1007/s00418-005-0764-7

    Article  PubMed  Google Scholar 

  • Wörl J, Mayer B, Neuhuber WL (1994) Nitrergic innervation of the rat esophagus: focus on motor endplates. J Auton Nerv Syst 49:227–233

    Article  PubMed  Google Scholar 

  • Wörl J, Dutsch F, Neuhuber WL (2002) Development of neuromuscular junctions in the mouse esophagus: focus on establishment and reduction of enteric co-innervation. Anat Embryol (Berl) 205:141–152. doi:10.1007/s00429-002-0239-8

    Article  Google Scholar 

  • Zhao WJ, Sun QJ, Lung MS, Birch D, Guo RC, Pilowsky PM (2011) Substance P, tyrosine hydroxylase and serotonin terminals in the rat caudal nucleus ambiguus. Respir Physiol Neurobiol 178:337–340. doi:10.1016/j.resp.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  • Zhu HC, Zhao J, Luo CY, Li QQ (2012) Gastrointestinal dysfunction in a Parkinson’s disease rat model and the changes of dopaminergic, nitric oxidergic, and cholinergic neurotransmitters in myenteric plexus. J Mol Neurosci 47:15–25. doi:10.1007/s12031-011-9560-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Karin Löschner, Stephanie Link, Andrea Hilpert, Anita Hecht and Hedwig Symowski for their expert technical assistance. Special thanks go to an anonymous reviewer for his valuable comments and suggestions to improve the quality of the manuscript. The present work was performed in partial fulfillment of the requirements of the Friedrich-Alexander University of Erlangen-Nürnberg for obtaining the degree “Dr. rer. biol. hum.” This study was supported by DFG NE 534/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wörl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Keylen, P., Garreis, F., Steigleder, R. et al. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus. Histochem Cell Biol 145, 573–585 (2016). https://doi.org/10.1007/s00418-015-1403-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1403-6

Keywords

Navigation