Skip to main content
Log in

Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

As previous studies suggested, nuclear myosin I (NMI) and actin have important roles in DNA transcription. In this study, we characterized the dynamics of these two proteins during transcriptional activation in phytohemagglutinin (PHA) stimulated human lymphocytes. The stimulation led to strong up-regulation of NMI both on the mRNA and protein level, while actin was relatively stably expressed. The intranuclear distribution of actin and NMI was evaluated using immunogold labeling. In nucleoli of resting cells, actin was localized predominantly to fibrillar centers (FCs), while NMI was located mainly to the dense fibrillar component (DFC). Upon stimulation, FCs remained the main site of actin localization, however, an accumulation of both actin and NMI in the DFC and in the granular component was observed. In the nucleoplasm of resting lymphocytes, both actin and NMI were localized mostly in condensed chromatin. Following stimulation, the majority of both proteins shifted towards the decondensed chromatin. In transcriptionally active cells, both actin and NMI colocalized with nucleoplasmic transcription sites. These results demonstrate that actin and NMI are compartmentalized in the nuclei where they can dynamically translocate depending on transcriptional activity of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PHA:

Phytohemagglutinin

FC:

Fibrillar center

DFC:

Dense fibrillar component

GC:

Granular component

NMI:

Nuclear myosin I

RT:

Room temperature

References

  • Bas A, Forsberg G, Hammarstrom S, Hammarstrom ML (2004) Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol 59:566–573

    Article  PubMed  CAS  Google Scholar 

  • Bernhard W (1969) A new staining procedure for electron microscopical cytology. J Ultrastruct Res 27:250–265

    Article  PubMed  CAS  Google Scholar 

  • Bettinger BT, Gilbert DM, Amberg DC (2004) Actin up in the nucleus. Nat Rev Mol Cell Biol 5:410–415

    Article  PubMed  CAS  Google Scholar 

  • Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89

    PubMed  CAS  Google Scholar 

  • Busch H, Smetana K. (1970) The nucleolus. Academic, New York

    Google Scholar 

  • Carmo-Fonseca M (2002) The contribution of nuclear compartmentalization to gene regulation. Cell 108:513–521

    Article  PubMed  CAS  Google Scholar 

  • Cmarko D, Verschure PJ, Rothblum LI, Hernandez-Verdun D, Amalric F, van Driel R, Fakan S (2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181–187

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Kupper K, Dietzel S, Fakan S (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell 96:555–567

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 4:86–90

    Article  PubMed  CAS  Google Scholar 

  • Fomproix N, Percipalle P (2004) An actin-myosin complex on actively transcribing genes. Exp Cell Res 294:140–148

    Article  PubMed  CAS  Google Scholar 

  • Frankel S, Sigel EA, Craig C, Elgin SC, Mooseker MS, Artavanis-Tsakonas S (1997) An actin-related protein in Drosophila colocalizes with heterochromatin protein 1 in pericentric heterochromatin. J Cell Sci 110(17):1999–2012

    PubMed  CAS  Google Scholar 

  • Hendzel MJ, Bazett JD (1995) RNA polymerase II transcription and the functional organization of the mammalian cell nucleus. Chromosoma 103:509–516

    Article  PubMed  CAS  Google Scholar 

  • Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E, Philimonenko V, Kyselá K, Goodrich JA, Lessard JL, Hope TJ, Hozák P, de Lanerolle P (2004) Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol 6:1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Hozák P (1995) Catching RNA polymerase I in Flagranti: ribosomal genes are transcribed in the dense fibrillar component of the nucleolus 216:285–289

  • Hozák P, Novák JT, Smetana K (1989) Three-dimensional reconstructions of nucleolus-organizing regions in PHA-stimulated human lymphocytes. Biology of the Cell 66:225–233

    Article  PubMed  Google Scholar 

  • Hozák P, Cook PR, Schofer C, Mosgoller W, Wachtler F (1994) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107:639–648

    PubMed  Google Scholar 

  • Hu P, Wu S, Hernandez N (2004) A role for beta-actin in RNA polymerase III transcription. Genes Dev 18:3010–3015

    Article  PubMed  CAS  Google Scholar 

  • Huang S (2002) Building an efficient factory: where is pre-rRNA synthesized in the nucleolus? J Cell Biol 157:739–741

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA (2003) The principles of nuclear structure. Chromosome Res 11:387–401

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Iborra FJ, Manders EM, Cook PR (1998) Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell 9:1523–1536

    PubMed  CAS  Google Scholar 

  • Jordan P, Mannervik M, Tora L, Carmo-Fonseca M (1996) In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133:225–234

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa JI (2000) Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5:289–307

    Article  PubMed  CAS  Google Scholar 

  • Kukalev A, Nord Y, Palmberg C, Bergman T, Percipalle P (2005) Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol 12:238–244

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lin JJ (1981) Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate the intermediate filaments of cultured cells. Proc Natl Acad Sci USA 78:2335–2339

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mosgoeller W, Schofer C, Wesierska-Gadek J, Steiner M, Muller M, Wachtler F (1998) Ribosomal gene transcription is organized in foci within nucleolar components. Histochem Cell Biol 109:111–118

    Article  PubMed  CAS  Google Scholar 

  • Mosgoeller W, Schofer C, Steiner M, Sylvester JE, Hozák P (2001) Arrangement of ribosomal genes in nucleolar domains revealed by detection of “Christmas tree" components. Histochem Cell Biol 116:495–505

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu H, Ueda K (1985) Association of rapidly-labelled RNAs with actin in nuclear matrix from mouse L5178Y cells. Exp Cell Res 160:319–330

    Article  PubMed  CAS  Google Scholar 

  • Nowak G, Pestic-Dragovich L, Hozák P, Philimonenko A, Simerly C, Schatten G, de Lanerolle P (1997) Evidence for the presence of myosin I in the nucleus. J Biol Chem 272:17176–17181

    Article  PubMed  CAS  Google Scholar 

  • Olave IA, Reck-Peterson SL, Crabtree GR (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem 71:755–781

    Article  PubMed  CAS  Google Scholar 

  • Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123:203–216

    Article  PubMed  CAS  Google Scholar 

  • Olson MO, Dundr M, Szebeni A (2000) The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol 10:189–196

    Article  PubMed  CAS  Google Scholar 

  • Pederson T, Aebi U (2002) Actin in the nucleus: what form and what for? J Struct Biol 140:3–9

    Article  PubMed  CAS  Google Scholar 

  • Percipalle P, Zhao J, Pope B, Weeds A, Lindberg U, Daneholt B (2001) Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J Cell Biol 153:229–236

    Article  PubMed  CAS  Google Scholar 

  • Percipalle P, Jonsson A, Nashchekin D, Karlsson C, Bergman T, Guialis A, Daneholt B (2002) Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res 30:1725–1734

    Article  PubMed  CAS  Google Scholar 

  • Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y, Settlage RE, Shabanowitz J, Hunt DF, Hozák P, de Lanerolle P (2000) A myosin I isoform in the nucleus. Science 290:337–341

    Article  PubMed  CAS  Google Scholar 

  • Philimonenko AA, Janáček J, Hozák P (2000) Statistical evaluation of colocalization patterns in immunogold labeling experiments. J Struct Biol 132:201–210

    Article  PubMed  CAS  Google Scholar 

  • Philimonenko VV, Zhao J, Iben S, Dingová H, Kyselá K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozák P, Grummt I (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Puvion E, Puvion-Dutilleul F (1996) Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules. Exp Cell Res 229:217–225

    Article  PubMed  CAS  Google Scholar 

  • Rando OJ, Zhao K, Crabtree GR (2000) Searching for a function for nuclear actin. Trends Cell Biol 10:92–97

    Article  PubMed  CAS  Google Scholar 

  • Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246

    Article  PubMed  CAS  Google Scholar 

  • Rungger D, Rungger-Brandle E, Chaponnier C, Gabbiani G (1979) Intranuclear injection of anti-actin antibodies into Xenopus oocytes blocks chromosome condensation. Nature 282:320–321

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Hock R (1999) Structure and function of the nucleolus. Curr Opin Cell Biol 11:385–390

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher HG, Mosgoeller W (2000) Ribosome biogenesis in man: current views on nucleolar structures and function. Cytogenet Cell Genet 91:243–252

    Article  PubMed  CAS  Google Scholar 

  • Setterfield G, Hall R, Bladon T, Little J, Kaplan JG (1983) Changes in structure and composition of lymphocyte nuclei during mitogenic stimulation. J Ultrastruct Res 82:264–282

    Article  PubMed  CAS  Google Scholar 

  • Sirri V, Roussel P, Hernandez-Verdun D (1999) The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 112(19):3259–3268

    PubMed  CAS  Google Scholar 

  • Smetana K, Potměšil M (1968) Ring shaped nucleoli in liver cells of rats after treatment with actinomycin D. Z Zellforsch Mikrosk Anat 92(1):62–69

    Article  PubMed  CAS  Google Scholar 

  • Spector DL (2003) The dynamics of chromosome organization and gene regulation. Annu Rev Biochem 72:573–608

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Lindmo T (1979) Initiation of the blastogenic response of lymphocytes by hyperoptimal concentrations of concanavalin A. Eur J Immunol 9:434–439

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Visintin R, Amon A (2000) The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 12:372–377

    Article  PubMed  CAS  Google Scholar 

  • Wada A, Fukuda M, Mishima M, Nishida E (1998) Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. Embo J 17:1635–1641

    Article  PubMed  CAS  Google Scholar 

  • Zatsepina OV, Hozák P, Babadjanyan D, Chentsov Y (1988) Quantitative ultrastructural study of nucleolus-organizing regions at some stages of the cell cycle (G0 period, G2 period, mitosis). Biol Cell 62:211–218

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95:625–636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic (reg. no. 204/04/108 and 304/03/1118), by the Grant Agency of the Academy of Sciences of the Czech Republic (reg. no. IAA5039202), and by the institutional grant no. AV0Z5039906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Hozák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyselá, K., Philimonenko, A.A., Philimonenko, V.V. et al. Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem Cell Biol 124, 347–358 (2005). https://doi.org/10.1007/s00418-005-0042-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0042-8

Keywords

Navigation