Skip to main content

Advertisement

Log in

Epidermal growth factor: the driving force in initiation of RPE cell proliferation

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To analyze whether epidermal growth factor (EGF) exerts regulatory effects on proliferation and differentiation in ARPE19 cells after different incubation periods (24 vs. 48 h) for obtaining ideal conditions for feasible rejuvenation and autologous transplantation of retinal pigment epithelial cells (RPE cells).

Methods

To evaluate gene expression patterns of RPE-specific differentiation and proliferation markers as well as transcriptional and translational changes of beta-catenin (ß-catenin)-signaling markers by fluorescence activated cell sorting (FACS) and reverse transcription – polymerase chain reaction (RT-PCR) after 24 h of EGF treatment.

Results

After 24 h of EGF treatment, a significant decrease of retinal pigment epithelium-specific protein 65 (RPE 65), cellular retinaldehyde-binding protein (CRALBP) and cytokeratin 18 in ARPE-19 cells was scaled. In addition, an increase of cyclin D1 expression and a significant decrease of glycogen synthase kinase-3beta (GSK-3ß) and beta-catenin (ß-catenin) were equally observed after 24 and 48 h of EGF treatment. Cell-cycle studies revealed an increase of ARPE cells in S-G2/M phase after 24 h of EGF treatment.

Conclusions

Our data demonstrate the induction of proliferation and upregulation of the ß-catenin signaling pathway by EGF even after 24 h of incubation. As ideal cell culture conditions are essential for maintaining RPE-specific phenotypes, short incubation times enhance RPE cell quality for feasible rejuvenation and subsequent autologous transplantation of RPE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Binder S, Stolba U, Krebs I (2002) Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularisation resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol 133:215–225

    Article  PubMed  Google Scholar 

  2. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadoulina A, Kellner L, Stanzel BV, Jahn C, Feichtinger H (2004) Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45:4151–4160

    Article  PubMed  Google Scholar 

  3. Binder S, Glittenberg CG, Stanzel BV (2007) Transplantation of RPE in AMD. Prog Retin Eye Res 26:516–5544

    Article  PubMed  Google Scholar 

  4. Van Meurs JC, Van Den Biesen PR (2003) Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am J Ophthalmol 136:4ff

    Google Scholar 

  5. Bindewald A, Roth F, Van Meurs J, Holz FG (2004) Transplantation of retinal pigment pithelium (RPE. following CNV removal in patients with AMD. Techniques, results, outlook. Ophthalmologe 101:886–894

    Article  PubMed  CAS  Google Scholar 

  6. MacLaren RE, Uppal GS, Balaggan KS, Tufail A, Munro PM, Milliken AB, Ali RR, Rubin GS, Aylward GW, Da Cruz L (2007) Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology 114:561–570

    Article  PubMed  Google Scholar 

  7. Maaijwee K, Missotten T, Mulder P, Van Meurs JC (2008) Influence of intraoperative course on visual outcome after an RPE-choroid translocation. Invest Ophthalmol Vis Sci 49:758–761

    Article  PubMed  Google Scholar 

  8. Maaijwee K, Joussen AM, Kirchhof B, Van Meurs JC (2008) Retinal pigment epithelium (RPE)-choroid graft translocation in the treatment of an RPE tear: preliminary results. Br J Ophthalmol 92:526–529

    Article  PubMed  CAS  Google Scholar 

  9. Marmor MF, Wolfensberger TJ (1998) The retinal pigment epithelium – function and disease. Oxford University Press, Oxford

  10. Boulton M, Rozanowska M, Wess T (2004) Ageing of the retinal pigment epithelium: implications for transplantations. Graefe´s Arch Clin Exp Ophthalm 242:76–84

    Article  Google Scholar 

  11. Boulton M (1991) Aging of the retinal pigment epithelium. In: Osbourne N, Chader G (eds) Progress in retinal eye research. Pergamon, Oxford, pp 125–151

    Google Scholar 

  12. Steindl K, Binder S (2008) Retinal degeneration processes and transplantation of retinal pigment epithelial cells: past, present and future trends. Spektrum der Augenheilkunde 22(6):357–361

    Article  Google Scholar 

  13. Steindl-Kuscher K, Krugluger W, Boulton ME, Haas P, Feichtinger H, Adlassnig W, Schrattbauer K, Binder S (2009) Activation of ß-catenin signalling pathway and its impact on the cell cycle in RPE cells: proliferation vs. differentiation. Invest Ophthalmol Vis Sci 50:4471–4476

    Article  PubMed  Google Scholar 

  14. Defoe DM, Grindstaff RD (2004) Epidermal growth factor stimulation of RPE cell survival: contribution of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Exp Eye Res 79:51–59

    Article  PubMed  CAS  Google Scholar 

  15. Hecquet C, Lefevre G, Valtnik M, Engelmann K, Mascarelli F (2002) Activation and role of MAP kinase-dependent pathways in retinal pigment epithelial cells: ERK and RPE cell proliferation. Invest Ophthalmol Vis Sci 43:3091–3098

    PubMed  Google Scholar 

  16. Miura Y, Klettner A, Noelle B, Hasselbach H, Roider J (2010) Change of morphological and functional characteristics of retinal pigment epithelium cells during cultivation of retinal pigment epithelium-choroid perfusion tissue culture. Ophthalmic Res 43:122–133

    Article  PubMed  Google Scholar 

  17. Valtink M, Engelmann K (2009) Culturing of retinal pigment epithelium cells. Dev Ophthalmol 43:109–119

    Article  PubMed  Google Scholar 

  18. Stanzel BV, Espana EM, Grueterich M, Kawakita T, Parel JM, Tseng SC, Binder S (2005) Amniotic membrane maintains the phenotype of rabbit retinal pigment epithelial cells in culture. Exp Eye Res 80:103–112

    Article  PubMed  CAS  Google Scholar 

  19. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmland LM (1996) ARPE-19, A human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169

    Article  PubMed  CAS  Google Scholar 

  20. Krugluger W, Seidel S, Steindl K, Binder S (2007) Epidermal growth factor inhibits glycogen synthase kinase-3 (GSK-3) and β-catenin transcription in cultured ARPE-19 cells. Graefe´s Arch. Clin Exp Ophthalm 245:1543–1548

    Article  CAS  Google Scholar 

  21. Schlunck G, Martin G, Agostini HT, Camatta G, Hansen LL (2002) Cultivation of human retinal pigment epithelial cells from human choroidal neovascular membranes in age-related macular degeneration. Exp Eye Res 74:571–576

    Article  PubMed  CAS  Google Scholar 

  22. ABI Prism 7700 Sequence Detection System: relative quantification of gene expression. Bulletin 2, PE Applied Biosystems. 1–36, 2001

  23. Eldar-Finkelman H, Seger R, Vandenheede JR, Krebs EG (1995) Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated mitogen-activated protein kinase/p90 ribosomal protein s6 kinase signalling pathway in HIH/3 T3 cells. J Biol Chem 270:987–990

    Article  PubMed  CAS  Google Scholar 

  24. Graham NA, Asthagiri AR (2004) Epidermal growth factor-mediated T-cell factor/lymphoid enhancer factor transcriptional activity is essential but not sufficient for cell cycle progression in nontransformed mammary epithelial cells. J Biol Chem 279:23517–23524

    Article  PubMed  CAS  Google Scholar 

  25. Kanuga N, Winton HL, Beauchene L, Koman A, Zerbib A, Halford S, Couraud P, Keegan D, Coffey P, Lund RD, Adamson P, Greenwood J (2002) Characterization of genetically modified human retinal pigment epithelial cells developed for in vitro and transplantation studies. Invest Ophthalmol Vis Sci 43:546–555

    PubMed  Google Scholar 

  26. Sharma RK, Orr WE, Schmitt AD, Johnson DA (2005) A functional profile of gene expression in ARPE-19 cells. BMC Ophthalmol 5:2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Steindl-Kuscher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steindl-Kuscher, K., Boulton, M.E., Haas, P. et al. Epidermal growth factor: the driving force in initiation of RPE cell proliferation. Graefes Arch Clin Exp Ophthalmol 249, 1195–1200 (2011). https://doi.org/10.1007/s00417-011-1673-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1673-1

Keywords

Navigation