Skip to main content

Advertisement

Log in

Effects of low-level laser irradiation on proliferation and functional protein expression in human RPE cells

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser irradiation (LLLI) modulates a set of biological effects in many cell types such as fibroblasts, keratinocytes, and stem cells. However, no study to date has reported the effects of LLLI on retinal pigment epithelia (RPE) cells. The aim of this study was to investigate whether LLLI could enhance the proliferation of RPE cells and increase the expression of RPE functional genes/proteins. Human ARPE-19 cells were seeded overnight and treated with 8 J/cm2 of LLLI. Cell proliferation was measured by CCK8 assay and cell cycle distribution was evaluated by FACS. The transcription of cell cycle-specific genes and RPE functional genes was quantified by RT-PCR. Moreover, the expression of ZO-1 and CRALBP were evaluated by immunostaining. A dose of 8 J/cm2 of LLLI significantly increased proliferation and promoted cell cycle progression while upregulating the transcription of CDK4 and CCND1 and decreasing the transcription of CDKN2A, CDKN2C, and CDKN1B in human ARPE-19 cells. Additionally, LLLI enhanced the expression of ZO-1 and CRALBP in human ARPE-19 cells. In conclusion, LLLI could enhance the proliferative ability of human ARPE-19 cells by modulating cyclin D1, CDK4, and a group of cyclin-dependent kinase inhibitors. It also could increase the expression of RPE-specific proteins. Thus, LLLI may be a potential approach for the treatment of RPE degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Ann Med 38(7):450–471

    Article  PubMed  Google Scholar 

  2. Nowak JZ (2006) Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 58:353–363

    CAS  PubMed  Google Scholar 

  3. Dang Y, Zhang C, Zhu Y (2015) Stem cell therapies for age-related macular degeneration: the past, present, and future. Clin Interv Aging 10:255–264

    Article  PubMed Central  PubMed  Google Scholar 

  4. Li F, Zeng Y, Xu H, Yin ZQ (2015) Subretinal transplantation of retinal pigment epithelium overexpressing fibulin-5 inhibits laser-induced choroidal neovascularization in rats. Exp Eye Res 136:78–85

    Article  CAS  PubMed  Google Scholar 

  5. Alexander P, Thomson HA, Luff AJ, Lotery AJ (2015) Retinal pigment epithelium transplantation: concepts, challenges, and future prospects. Eye (Lond) 29:992–1002

    Article  CAS  Google Scholar 

  6. Stanzel BV, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N, Corneo B, Holz FG, Temple S, Stern JH, Blenkinsop TA (2014) Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep 2(1):64–77

    Article  CAS  Google Scholar 

  7. Guan Y, Cui L, Qu Z, Lu L, Wang F, Wu Y, Zhang J, Gao F, Tian H, Xu L, Xu G, Li W, Jin Y, Xu GT (2013) Subretinal transplantation of rat MSCs and erythropoietin gene modified rat MSCs for protecting and rescuing degenerative retina in rats. Curr Mol Med 13(9):1419–1431

    Article  CAS  PubMed  Google Scholar 

  8. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27(9):2126–2135

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720

    Article  CAS  PubMed  Google Scholar 

  10. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23(2):161–166

    Article  CAS  PubMed  Google Scholar 

  11. Esmaeelinejad M, Bayat M, Darbandi H, Bayat M, Mosaffa N (2014) The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums. Lasers Med Sci 29(1):121–129

    Article  PubMed  Google Scholar 

  12. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27(2):423–430

    Article  PubMed  Google Scholar 

  13. Onizawa K, Muramatsu T, Matsuki M, Ohta K, Matsuzaka K, Oda Y, Shimono M (2009) Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland. Lasers Med Sci 24(2):155–161

    Article  PubMed  Google Scholar 

  14. Gavish L, Perez LS, Reissman P, Gertz SD (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med 40(5):371–378

    Article  PubMed  Google Scholar 

  15. Fathabadie FF, Bayat M, Amini A, Bayat M, Rezaie F (2013) Effects of pulsed infra-red low level-laser irradiation on mast cells number and degranulation in open skin wound healing of healthy and streptozotocin-induced diabetic rats. J Cosmet Laser Ther 15(6):294–304

    Article  PubMed  Google Scholar 

  16. Seyedmousavi S, Hashemi SJ, Rezaie S, Fateh M, Djavid GE, Zibafar E, Morsali F, Zand N, Alinaghizadeh M, Ataie-Fashtami L (2014) Effects of low-level laser irradiation on the pathogenicity of Candida albicans: in vitro and in vivo study. Photomed Laser Surg 32(6):322–329

    Article  PubMed  Google Scholar 

  17. Ogita M, Tsuchida S, Aoki A, Satoh M, Kado S, Sawabe M et al (2014) Increased cell proliferation and differential protein expression induced by low-level Er:YAG laser irradiation in human gingival fibroblasts: proteomic analysis. Lasers Med Sci. doi:10.1007/s10103-014-1691-4, Nov 28

    PubMed  Google Scholar 

  18. Sperandio FF, Simões A, Corrêa L, Aranha AC, Giudice FS, Hamblin MR et al (2014) Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics. doi:10.1002/jbio.201400064, 9999 (9999)

    PubMed  Google Scholar 

  19. Chen MH, Huang YC, Sun JS, Chao YH, Chen MH (2015) Second messengers mediating the proliferation and collagen synthesis of tenocytes induced by low-level laser irradiation. Lasers Med Sci 30(1):263–272

    Article  CAS  PubMed  Google Scholar 

  20. Barboza CA, Ginani F, Soares DM, Henriques AC, Freitas RA (2014) Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo) 12(1):75–81

    Article  Google Scholar 

  21. Frigo L, Fávero GM, Lima HJ, Maria DA, Bjordal JM, Joensen J et al (2010) Low-level laser irradiation (InGaAlP-660 nm) increases fibroblast cell proliferation and reduces cell death in a dose-dependent manner. Photomed Laser Surg 28(Suppl 1):S151–S156

    CAS  PubMed  Google Scholar 

  22. AlGhamdi KM, Kumar A, Ashour AE, AlGhamdi AA (2015) A comparative study of the effects of different low-level lasers on the proliferation, viability, and migration of human melanocytes in vitro. Lasers Med Sci 30(5):1541–1551, May 8

    Article  PubMed  Google Scholar 

  23. Schartinger VH, Galvan O, Riechelmann H, Dudás J (2012) Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy. Support Care Cancer 20(3):523–529

    Article  PubMed  Google Scholar 

  24. Lev-Tov H, Mamalis A, Brody N, Siegel D, Jagdeo J (2013) Inhibition of fibroblast proliferation in vitro using red light-emitting diodes. Dermatol Surg 39(8):1167–1170

    Article  CAS  PubMed  Google Scholar 

  25. Emelyanov AN, Kiryanova VV (2015) Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg 33(3):164–174

    Article  PubMed  Google Scholar 

  26. Nicholson B, Noble J, Forooghian F, Meyerle C (2013) Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol 58(2):103–126

    Article  PubMed Central  PubMed  Google Scholar 

  27. Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, Hattar S et al (2015) CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest 125(2):727–738

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ablonczy Z, Dahrouj M, Tang PH, Liu Y, Sambamurti K, Marmorstein AD et al (2011) Human retinal pigment epithelium cells as functional models for the RPE in vivo. Invest Ophthalmol Vis Sci 52(12):8614–8620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 81371017), the International Cooperation Foundation of Henan Province (no. 2015GH12), and the International Training Project for Excellent Scholars of Henan Province 2015 (2015-13).

Conflict of interest

The authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhu or Chun Zhang.

Additional information

Yalong Dang, Wentao Wu and Yongsheng Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Y., Wu, W., Xu, Y. et al. Effects of low-level laser irradiation on proliferation and functional protein expression in human RPE cells. Lasers Med Sci 30, 2295–2302 (2015). https://doi.org/10.1007/s10103-015-1809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1809-3

Keywords

Navigation