Skip to main content
Log in

The effect of dopamine replacement therapy on haptic sensitivity in Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Increasing evidence indicates that processing of proprioceptive information is altered in Parkinson’s disease (PD), leading to reduced kinaesthetic and haptic sensitivity. However, there is inconclusive evidence whether dopamine replacement therapy (DRT) ameliorates or worsens kinaesthetic and haptic function in PD. For assessing perceptual function, we employed a task that did not require active motion or stressed working memory function, which may become impaired in PD. A group of mild to moderate stage PD patients (n = 9) and a group of age-matched healthy controls participated in this study. Without vision, a subject’s hand was moved by a robotic manipulandum along the contours of a small “virtual box” (5 × 15 cm). At the end of each trial, they indicated whether the contour was “curved” or “straight”. PD patients were tested ON and OFF antiparkinsonian medication. Psychophysical detection thresholds were determined (curvature at which subjects correctly perceived a curved contour at the 75% level). Compared to the control group, thresholds were elevated by 55% in the PD patient group. During the ON medication state, the mean detection threshold of the patient group was reduced by 15% (ON: 4.71 m−1; OFF: 5.42 m−1). Increases in curvature sensitivity were highly correlated with improved clinical scores of motor function (r = 0.74) with more affected patients showing higher gains in sensitivity as the result of DRT (r = 0.80). This report documents that DRT can ameliorate haptic and kinaesthetic function in patients with mild to moderate PD, suggesting that DRT can have beneficial effects on perceptual function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18:231–240

    Article  PubMed  Google Scholar 

  2. Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H (2001) The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience 104:1027–1041

    Article  CAS  PubMed  Google Scholar 

  3. Benecke R, Rothwell JC, Dick JP, Day BL, Marsden CD (1987) Disturbance of sequential movements in patients with Parkinson’s disease. Brain 110(Pt 2):361–379

    Article  PubMed  Google Scholar 

  4. Boraud T, Bezard E, Bioulac B, Gross CE (2000) Ratio of inhibited-to-activated pallidal neurons decreases dramatically during passive limb movement in the MPTP-treated monkey. J Neurophysiol 83:1760–1763

    CAS  PubMed  Google Scholar 

  5. Clissold BG, McColl CD, Reardon KR, Shiff M, Kempster PA (2006) Longitudinal study of the motor response to levodopa in Parkinson’s disease. Mov Disord 21:2116–2121

    Article  PubMed  Google Scholar 

  6. Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. I. Functional organization. Exp Brain Res 53:233–243

    Article  CAS  PubMed  Google Scholar 

  7. Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp Brain Res 53:244–258

    Article  CAS  PubMed  Google Scholar 

  8. DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543

    CAS  PubMed  Google Scholar 

  9. Diamond SG, Schneider JS, Markham CH (1987) Oral sensorimotor defects in patients with Parkinson’s disease. Adv Neurol 45:335–338

    CAS  PubMed  Google Scholar 

  10. Fahn S (1999) Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs Later l-DOPA. Arch Neurol 56:529–535

    Article  CAS  PubMed  Google Scholar 

  11. Fechner GT (1889) Elemente der Psychophysik. Breitkopf & Härtel, Leipzig

    Google Scholar 

  12. Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176

    Article  CAS  PubMed  Google Scholar 

  13. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  14. Herting B, Schulze S, Reichmann H, Haehner A, Hummel T (2008) A longitudinal study of olfactory function in patients with idiopathic Parkinson’s disease. J Neurol 255:367–370

    Article  PubMed  Google Scholar 

  15. Jobst EE, Melnick ME, Byl NN, Dowling GA, Aminoff MJ (1997) Sensory perception in Parkinson disease. Arch Neurol 54:450–454

    CAS  PubMed  Google Scholar 

  16. Klockgether T, Borutta M, Rapp H, Spieker S, Dichgans J (1995) A defect of kinesthesia in Parkinson’s disease. Mov Disord 10:460–465

    Article  CAS  PubMed  Google Scholar 

  17. Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, Volkmann J, Maschke M (2009) Proprioception and motor control in Parkinson’s Disease. J Mot Behav 41(6):543–552

    Article  PubMed  Google Scholar 

  18. Konczak J, Krawczewski K, Tuite P, Maschke M (2007) The perception of passive motion in Parkinson’s disease. J Neurol 254:655–663

    Article  PubMed  Google Scholar 

  19. Konczak J, Li KY, Tuite PJ, Poizner H (2008) Haptic perception of object curvature in Parkinson’s disease. PLoS One 3:e2625

    Article  PubMed  Google Scholar 

  20. Kulisevsky J (2000) Role of dopamine in learning and memory: implications for the treatment of cognitive dysfunction in patients with Parkinson’s disease. Drugs Aging 16:365–379

    Article  CAS  PubMed  Google Scholar 

  21. Maschke M, Gomez CM, Tuite PJ, Konczak J (2003) Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain 126:2312–2322

    Article  PubMed  Google Scholar 

  22. Maschke M, Tuite PJ, Krawczewski K, Pickett K, Konczak J (2006) Perception of heaviness in Parkinson’s disease. Mov Disord 21:1013–1018

    Article  PubMed  Google Scholar 

  23. Maschke M, Tuite PJ, Pickett K, Wachter T, Konczak J (2005) The effect of subthalamic nucleus stimulation on kinaesthesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 76:569–571

    Article  CAS  PubMed  Google Scholar 

  24. Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch Neurol 55:84–90

    Article  CAS  PubMed  Google Scholar 

  25. Mongeon M, Blanchet P, Messier J (2009) Impact of Parkinson’s disease and dopminergic medication on proprioceptive processing. Neuroscience 158:426–440

    Article  CAS  PubMed  Google Scholar 

  26. Muhlack S, Woitalla D, Welnic J, Twiehaus S, Przuntek H, Muller T (2004) Chronic levodopa intake increases levodopa plasma bioavailability in patients with Parkinson’s disease. Neurosci Lett 363:284–287

    Article  CAS  PubMed  Google Scholar 

  27. Nagy A, Eordegh G, Paroczy Z, Markus Z, Benedek G (2006) Multisensory integration in the basal ganglia. Eur J Neurosci 24:917–924

    Article  PubMed  Google Scholar 

  28. O’Suilleabhain P, Bullard J, Dewey RB (2001) Proprioception in Parkinson’s disease is acutely depressed by dopaminergic medications. J Neurol Neurosurg Psychiatry 71:607–610

    Article  PubMed  Google Scholar 

  29. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  30. Putzki N, Stude P, Konczak J, Graf K, Diener HC, Maschke M (2006) Kinesthesia is impaired in focal dystonia. Mov Disord 21:754–760

    Article  PubMed  Google Scholar 

  31. Robertson LT, Hammerstad JP (1996) Jaw movement dysfunction related to Parkinson’s disease and partially modified by levodopa. J Neurol Neurosurg Psychiatry 60:41–50

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockkman V, Vitek J, DeLong MR, Obeso JA (2001) The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790

    Article  CAS  PubMed  Google Scholar 

  33. Sathian K, Zangaladze A (1997) Tactile learning is task specific but transfers between fingers. Percept Psychophys 59:119–128

    CAS  PubMed  Google Scholar 

  34. Tucha O, Mecklinger L, Thome J, Reiter A, Alders GL, Sartor H, Naumann M, Lange KW (2006) Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. J Neural Transm 113:609–623

    Article  CAS  PubMed  Google Scholar 

  35. Tunik E, Feldman AG, Poizner H (2007) Dopamine replacement therapy does not restore the ability of Parkinsonian patients to make rapid adjustments in motor strategies according to changing sensorimotor contexts. Parkinsonism Relat Disord 13:425–433

    Article  CAS  PubMed  Google Scholar 

  36. Zia S, Cody F, O’Boyle D (2000) Joint position sense is impaired by Parkinson’s disease. Ann Neurol 47:218–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-yi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Ky., Pickett, K., Nestrasil, I. et al. The effect of dopamine replacement therapy on haptic sensitivity in Parkinson’s disease. J Neurol 257, 1992–1998 (2010). https://doi.org/10.1007/s00415-010-5646-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5646-9

Keywords

Navigation